Adding support for new parameters
This commit is contained in:
parent
71765ae243
commit
469b15b579
3
.vscode/settings.json
vendored
Normal file
3
.vscode/settings.json
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
{
|
||||
"python.linting.enabled": true
|
||||
}
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -38,7 +38,11 @@ def save_variables(
|
||||
use_safetensors,
|
||||
enable_bucket,
|
||||
gradient_checkpointing,
|
||||
full_fp16
|
||||
full_fp16,
|
||||
no_token_padding,
|
||||
stop_text_encoder_training,
|
||||
use_8bit_adam,
|
||||
xformers,
|
||||
):
|
||||
# Return the values of the variables as a dictionary
|
||||
variables = {
|
||||
@ -67,7 +71,11 @@ def save_variables(
|
||||
"use_safetensors": use_safetensors,
|
||||
"enable_bucket": enable_bucket,
|
||||
"gradient_checkpointing": gradient_checkpointing,
|
||||
"full_fp16": full_fp16
|
||||
"full_fp16": full_fp16,
|
||||
"no_token_padding": no_token_padding,
|
||||
"stop_text_encoder_training": stop_text_encoder_training,
|
||||
"use_8bit_adam": use_8bit_adam,
|
||||
"xformers": xformers,
|
||||
}
|
||||
|
||||
# Save the data to the selected file
|
||||
@ -108,6 +116,10 @@ def load_variables(file_path):
|
||||
my_data.get("enable_bucket", None),
|
||||
my_data.get("gradient_checkpointing", None),
|
||||
my_data.get("full_fp16", None),
|
||||
my_data.get("no_token_padding", None),
|
||||
my_data.get("stop_text_encoder_training", None),
|
||||
my_data.get("use_8bit_adam", None),
|
||||
my_data.get("xformers", None),
|
||||
)
|
||||
|
||||
|
||||
@ -137,7 +149,11 @@ def train_model(
|
||||
use_safetensors,
|
||||
enable_bucket,
|
||||
gradient_checkpointing,
|
||||
full_fp16
|
||||
full_fp16,
|
||||
no_token_padding,
|
||||
stop_text_encoder_training_pct,
|
||||
use_8bit_adam,
|
||||
xformers,
|
||||
):
|
||||
def save_inference_file(output_dir, v2, v_parameterization):
|
||||
# Copy inference model for v2 if required
|
||||
@ -155,8 +171,11 @@ def train_model(
|
||||
)
|
||||
|
||||
# Get a list of all subfolders in train_data_dir
|
||||
subfolders = [f for f in os.listdir(train_data_dir) if os.path.isdir(
|
||||
os.path.join(train_data_dir, f))]
|
||||
subfolders = [
|
||||
f
|
||||
for f in os.listdir(train_data_dir)
|
||||
if os.path.isdir(os.path.join(train_data_dir, f))
|
||||
]
|
||||
|
||||
total_steps = 0
|
||||
|
||||
@ -166,8 +185,16 @@ def train_model(
|
||||
repeats = int(folder.split("_")[0])
|
||||
|
||||
# Count the number of images in the folder
|
||||
num_images = len([f for f in os.listdir(os.path.join(train_data_dir, folder)) if f.endswith(
|
||||
".jpg") or f.endswith(".jpeg") or f.endswith(".png") or f.endswith(".webp")])
|
||||
num_images = len(
|
||||
[
|
||||
f
|
||||
for f in os.listdir(os.path.join(train_data_dir, folder))
|
||||
if f.endswith(".jpg")
|
||||
or f.endswith(".jpeg")
|
||||
or f.endswith(".png")
|
||||
or f.endswith(".webp")
|
||||
]
|
||||
)
|
||||
|
||||
# Calculate the total number of steps for this folder
|
||||
steps = repeats * num_images
|
||||
@ -182,15 +209,28 @@ def train_model(
|
||||
if reg_data_dir == "":
|
||||
reg_factor = 1
|
||||
else:
|
||||
print("Regularisation images are used... Will double the number of steps required...")
|
||||
print(
|
||||
"Regularisation images are used... Will double the number of steps required..."
|
||||
)
|
||||
reg_factor = 2
|
||||
|
||||
# calculate max_train_steps
|
||||
max_train_steps = int(
|
||||
math.ceil(float(total_steps) / int(train_batch_size) * int(epoch) * int(reg_factor))
|
||||
math.ceil(
|
||||
float(total_steps) / int(train_batch_size) * int(epoch) * int(reg_factor)
|
||||
)
|
||||
)
|
||||
print(f"max_train_steps = {max_train_steps}")
|
||||
|
||||
# calculate stop encoder training
|
||||
if stop_text_encoder_training_pct == None:
|
||||
stop_text_encoder_training = 0
|
||||
else:
|
||||
stop_text_encoder_training = math.ceil(
|
||||
float(max_train_steps) / 100 * int(stop_text_encoder_training_pct)
|
||||
)
|
||||
print(f"stop_text_encoder_training = {stop_text_encoder_training}")
|
||||
|
||||
lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100))
|
||||
print(f"lr_warmup_steps = {lr_warmup_steps}")
|
||||
|
||||
@ -209,6 +249,12 @@ def train_model(
|
||||
run_cmd += " --gradient_checkpointing"
|
||||
if full_fp16:
|
||||
run_cmd += " --full_fp16"
|
||||
if no_token_padding:
|
||||
run_cmd += " --no_token_padding"
|
||||
if use_8bit_adam:
|
||||
run_cmd += " --use_8bit_adam"
|
||||
if xformers:
|
||||
run_cmd += " --xformers"
|
||||
run_cmd += f" --pretrained_model_name_or_path={pretrained_model_name_or_path}"
|
||||
run_cmd += f" --train_data_dir={train_data_dir}"
|
||||
run_cmd += f" --reg_data_dir={reg_data_dir}"
|
||||
@ -227,6 +273,7 @@ def train_model(
|
||||
run_cmd += f" --save_precision={save_precision}"
|
||||
run_cmd += f" --logging_dir={logging_dir}"
|
||||
run_cmd += f" --caption_extention={caption_extention}"
|
||||
run_cmd += f" --stop_text_encoder_training={stop_text_encoder_training}"
|
||||
|
||||
print(run_cmd)
|
||||
# Run the command
|
||||
@ -245,8 +292,7 @@ def train_model(
|
||||
save_inference_file(output_dir, v2, v_parameterization)
|
||||
|
||||
if convert_to_safetensors:
|
||||
print(
|
||||
f"Converting diffuser model {last_dir} to {last_dir}.safetensors")
|
||||
print(f"Converting diffuser model {last_dir} to {last_dir}.safetensors")
|
||||
os.system(
|
||||
f"python ./tools/convert_diffusers20_original_sd.py {last_dir} {last_dir}.safetensors --{save_precision}"
|
||||
)
|
||||
@ -262,7 +308,10 @@ def train_model(
|
||||
|
||||
def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
|
||||
# define a list of substrings to search for
|
||||
substrings_v2 = ["stabilityai/stable-diffusion-2-1-base", "stabilityai/stable-diffusion-2-base"]
|
||||
substrings_v2 = [
|
||||
"stabilityai/stable-diffusion-2-1-base",
|
||||
"stabilityai/stable-diffusion-2-base",
|
||||
]
|
||||
|
||||
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
|
||||
if str(value) in substrings_v2:
|
||||
@ -273,18 +322,26 @@ def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
|
||||
return value, v2, v_parameterization
|
||||
|
||||
# define a list of substrings to search for v-objective
|
||||
substrings_v_parameterization = ["stabilityai/stable-diffusion-2-1", "stabilityai/stable-diffusion-2"]
|
||||
substrings_v_parameterization = [
|
||||
"stabilityai/stable-diffusion-2-1",
|
||||
"stabilityai/stable-diffusion-2",
|
||||
]
|
||||
|
||||
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
|
||||
if str(value) in substrings_v_parameterization:
|
||||
print("SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization")
|
||||
print(
|
||||
"SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization"
|
||||
)
|
||||
v2 = True
|
||||
v_parameterization = True
|
||||
|
||||
return value, v2, v_parameterization
|
||||
|
||||
# define a list of substrings to v1.x
|
||||
substrings_v1_model = ["CompVis/stable-diffusion-v1-4", "runwayml/stable-diffusion-v1-5"]
|
||||
substrings_v1_model = [
|
||||
"CompVis/stable-diffusion-v1-4",
|
||||
"runwayml/stable-diffusion-v1-5",
|
||||
]
|
||||
|
||||
if str(value) in substrings_v1_model:
|
||||
v2 = False
|
||||
@ -299,16 +356,29 @@ def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
|
||||
|
||||
return value, v2, v_parameterization
|
||||
|
||||
def remove_doublequote(file_path):
|
||||
if file_path != None:
|
||||
file_path = file_path.replace('"', '')
|
||||
|
||||
return file_path
|
||||
|
||||
|
||||
interface = gr.Blocks()
|
||||
|
||||
with interface:
|
||||
gr.Markdown("Enter kohya finetuner parameter using this interface.")
|
||||
with gr.Accordion("Configuration File Load/Save", open=False):
|
||||
with gr.Row():
|
||||
config_file_name = gr.Textbox(
|
||||
label="Config file name")
|
||||
config_file_name = gr.Textbox(label="Config file name")
|
||||
button_load_config = gr.Button("Load config")
|
||||
button_save_config = gr.Button("Save config")
|
||||
config_file_name.change(
|
||||
remove_doublequote,
|
||||
inputs=[config_file_name],
|
||||
outputs=[
|
||||
config_file_name
|
||||
]
|
||||
)
|
||||
with gr.Tab("Source model"):
|
||||
# Define the input elements
|
||||
with gr.Row():
|
||||
@ -325,39 +395,81 @@ with interface:
|
||||
"stabilityai/stable-diffusion-2-1",
|
||||
"stabilityai/stable-diffusion-2",
|
||||
"runwayml/stable-diffusion-v1-5",
|
||||
"CompVis/stable-diffusion-v1-4"
|
||||
"CompVis/stable-diffusion-v1-4",
|
||||
],
|
||||
)
|
||||
with gr.Row():
|
||||
v2_input = gr.Checkbox(label="v2", value=True)
|
||||
v_parameterization_input = gr.Checkbox(label="v_parameterization", value=False)
|
||||
v_parameterization_input = gr.Checkbox(
|
||||
label="v_parameterization", value=False
|
||||
)
|
||||
pretrained_model_name_or_path_input.change(
|
||||
remove_doublequote,
|
||||
inputs=[pretrained_model_name_or_path_input],
|
||||
outputs=[
|
||||
pretrained_model_name_or_path_input
|
||||
]
|
||||
)
|
||||
model_list.change(
|
||||
set_pretrained_model_name_or_path_input,
|
||||
inputs=[model_list, v2_input, v_parameterization_input],
|
||||
outputs=[pretrained_model_name_or_path_input,
|
||||
v2_input, v_parameterization_input],
|
||||
outputs=[
|
||||
pretrained_model_name_or_path_input,
|
||||
v2_input,
|
||||
v_parameterization_input,
|
||||
],
|
||||
)
|
||||
|
||||
with gr.Tab("Directories"):
|
||||
with gr.Row():
|
||||
train_data_dir_input = gr.Textbox(
|
||||
label="Image folder", placeholder="Directory where the training folders containing the images are located"
|
||||
label="Image folder",
|
||||
placeholder="Directory where the training folders containing the images are located",
|
||||
)
|
||||
reg_data_dir_input = gr.Textbox(
|
||||
label="Regularisation folder", placeholder="(Optional) Directory where where the regularization folders containing the images are located"
|
||||
label="Regularisation folder",
|
||||
placeholder="(Optional) Directory where where the regularization folders containing the images are located",
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
output_dir_input = gr.Textbox(
|
||||
label="Output directory",
|
||||
placeholder="Directory to output trained model",
|
||||
)
|
||||
logging_dir_input = gr.Textbox(
|
||||
label="Logging directory", placeholder="Optional: enable logging and output TensorBoard log to this directory"
|
||||
label="Logging directory",
|
||||
placeholder="Optional: enable logging and output TensorBoard log to this directory",
|
||||
)
|
||||
train_data_dir_input.change(
|
||||
remove_doublequote,
|
||||
inputs=[train_data_dir_input],
|
||||
outputs=[
|
||||
train_data_dir_input
|
||||
]
|
||||
)
|
||||
reg_data_dir_input.change(
|
||||
remove_doublequote,
|
||||
inputs=[reg_data_dir_input],
|
||||
outputs=[
|
||||
reg_data_dir_input
|
||||
]
|
||||
)
|
||||
output_dir_input.change(
|
||||
remove_doublequote,
|
||||
inputs=[output_dir_input],
|
||||
outputs=[
|
||||
output_dir_input
|
||||
]
|
||||
)
|
||||
logging_dir_input.change(
|
||||
remove_doublequote,
|
||||
inputs=[logging_dir_input],
|
||||
outputs=[
|
||||
logging_dir_input
|
||||
]
|
||||
)
|
||||
with gr.Tab("Training parameters"):
|
||||
with gr.Row():
|
||||
learning_rate_input = gr.Textbox(
|
||||
label="Learning rate", value=1e-6)
|
||||
learning_rate_input = gr.Textbox(label="Learning rate", value=1e-6)
|
||||
lr_scheduler_input = gr.Dropdown(
|
||||
label="LR Scheduler",
|
||||
choices=[
|
||||
@ -372,13 +484,11 @@ with interface:
|
||||
)
|
||||
lr_warmup_input = gr.Textbox(label="LR warmup", value=0)
|
||||
with gr.Row():
|
||||
train_batch_size_input = gr.Textbox(
|
||||
label="Train batch size", value=1
|
||||
train_batch_size_input = gr.Slider(
|
||||
minimum=1, maximum=32, label="Train batch size", value=1, step=1
|
||||
)
|
||||
epoch_input = gr.Textbox(label="Epoch", value=1)
|
||||
save_every_n_epochs_input = gr.Textbox(
|
||||
label="Save every N epochs", value=1
|
||||
)
|
||||
save_every_n_epochs_input = gr.Textbox(label="Save every N epochs", value=1)
|
||||
with gr.Row():
|
||||
mixed_precision_input = gr.Dropdown(
|
||||
label="Mixed precision",
|
||||
@ -398,41 +508,46 @@ with interface:
|
||||
],
|
||||
value="fp16",
|
||||
)
|
||||
num_cpu_threads_per_process_input = gr.Textbox(
|
||||
label="Number of CPU threads per process", value=4
|
||||
num_cpu_threads_per_process_input = gr.Slider(
|
||||
minimum=1,
|
||||
maximum=os.cpu_count(),
|
||||
step=1,
|
||||
label="Number of CPU threads per process",
|
||||
value=os.cpu_count(),
|
||||
)
|
||||
with gr.Row():
|
||||
seed_input = gr.Textbox(label="Seed", value=1234)
|
||||
max_resolution_input = gr.Textbox(
|
||||
label="Max resolution", value="512,512"
|
||||
)
|
||||
max_resolution_input = gr.Textbox(label="Max resolution", value="512,512")
|
||||
with gr.Row():
|
||||
caption_extention_input = gr.Textbox(
|
||||
label="Caption Extension", placeholder="(Optional) Extension for caption files. default: .caption")
|
||||
|
||||
label="Caption Extension",
|
||||
placeholder="(Optional) Extension for caption files. default: .caption",
|
||||
)
|
||||
stop_text_encoder_training_input = gr.Slider(minimum=0, maximum=100, value=0, step=1,
|
||||
label="Stop text encoder training",
|
||||
)
|
||||
with gr.Row():
|
||||
use_safetensors_input = gr.Checkbox(
|
||||
label="Use safetensor when saving", value=False
|
||||
)
|
||||
enable_bucket_input = gr.Checkbox(
|
||||
label="Enable buckets", value=False
|
||||
)
|
||||
cache_latent_input = gr.Checkbox(
|
||||
label="Cache latent", value=True
|
||||
)
|
||||
enable_bucket_input = gr.Checkbox(label="Enable buckets", value=False)
|
||||
cache_latent_input = gr.Checkbox(label="Cache latent", value=True)
|
||||
gradient_checkpointing_input = gr.Checkbox(
|
||||
label="Gradient checkpointing", value=False
|
||||
)
|
||||
with gr.Row():
|
||||
full_fp16_input = gr.Checkbox(
|
||||
label="Full fp16 training (experimental)", value=False
|
||||
)
|
||||
no_token_padding_input = gr.Checkbox(label="No tokan padding", value=False)
|
||||
use_8bit_adam_input = gr.Checkbox(label="Use 8bit adam", value=True)
|
||||
xformers_input = gr.Checkbox(label="USe xformers", value=True)
|
||||
|
||||
with gr.Tab("Model conversion"):
|
||||
convert_to_safetensors_input = gr.Checkbox(
|
||||
label="Convert to SafeTensors", value=False
|
||||
)
|
||||
convert_to_ckpt_input = gr.Checkbox(
|
||||
label="Convert to CKPT", value=False
|
||||
)
|
||||
convert_to_ckpt_input = gr.Checkbox(label="Convert to CKPT", value=False)
|
||||
|
||||
button_run = gr.Button("Run")
|
||||
|
||||
@ -465,8 +580,12 @@ with interface:
|
||||
use_safetensors_input,
|
||||
enable_bucket_input,
|
||||
gradient_checkpointing_input,
|
||||
full_fp16_input
|
||||
]
|
||||
full_fp16_input,
|
||||
no_token_padding_input,
|
||||
stop_text_encoder_training_input,
|
||||
use_8bit_adam_input,
|
||||
xformers_input,
|
||||
],
|
||||
)
|
||||
|
||||
button_save_config.click(
|
||||
@ -498,8 +617,12 @@ with interface:
|
||||
use_safetensors_input,
|
||||
enable_bucket_input,
|
||||
gradient_checkpointing_input,
|
||||
full_fp16_input
|
||||
]
|
||||
full_fp16_input,
|
||||
no_token_padding_input,
|
||||
stop_text_encoder_training_input,
|
||||
use_8bit_adam_input,
|
||||
xformers_input,
|
||||
],
|
||||
)
|
||||
button_run.click(
|
||||
train_model,
|
||||
@ -529,8 +652,12 @@ with interface:
|
||||
use_safetensors_input,
|
||||
enable_bucket_input,
|
||||
gradient_checkpointing_input,
|
||||
full_fp16_input
|
||||
]
|
||||
full_fp16_input,
|
||||
no_token_padding_input,
|
||||
stop_text_encoder_training_input,
|
||||
use_8bit_adam_input,
|
||||
xformers_input,
|
||||
],
|
||||
)
|
||||
|
||||
# Show the interface
|
||||
|
Loading…
Reference in New Issue
Block a user