commit
48122347a3
@ -163,11 +163,14 @@ This will store your a backup file with your current locally installed pip packa
|
||||
|
||||
## Change History
|
||||
|
||||
* 2023/02/16 (v20.7.3)
|
||||
- Noise offset is recorded to the metadata. Thanks to space-nuko!
|
||||
- Show the moving average loss to prevent loss jumping in `train_network.py` and `train_db.py`. Thanks to shirayu!
|
||||
* 2023/02/11 (v20.7.2):
|
||||
- ``lora_interrogator.py`` is added in ``networks`` folder. See ``python networks\lora_interrogator.py -h`` for usage.
|
||||
- `lora_interrogator.py` is added in `networks` folder. See `python networks\lora_interrogator.py -h` for usage.
|
||||
- For LoRAs where the activation word is unknown, this script compares the output of Text Encoder after applying LoRA to that of unapplied to find out which token is affected by LoRA. Hopefully you can figure out the activation word. LoRA trained with captions does not seem to be able to interrogate.
|
||||
- Batch size can be large (like 64 or 128).
|
||||
- ``train_textual_inversion.py`` now supports multiple init words.
|
||||
- `train_textual_inversion.py` now supports multiple init words.
|
||||
- Following feature is reverted to be the same as before. Sorry for confusion:
|
||||
> Now the number of data in each batch is limited to the number of actual images (not duplicated). Because a certain bucket may contain smaller number of actual images, so the batch may contain same (duplicated) images.
|
||||
- Add new tool to sort, group and average crop image in a dataset
|
||||
|
31
fine_tune.py
31
fine_tune.py
@ -14,6 +14,9 @@ from diffusers import DDPMScheduler
|
||||
|
||||
import library.train_util as train_util
|
||||
|
||||
import torch.optim as optim
|
||||
import dadaptation
|
||||
|
||||
|
||||
def collate_fn(examples):
|
||||
return examples[0]
|
||||
@ -162,7 +165,9 @@ def train(args):
|
||||
optimizer_class = torch.optim.AdamW
|
||||
|
||||
# betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略
|
||||
optimizer = optimizer_class(params_to_optimize, lr=args.learning_rate)
|
||||
# optimizer = optimizer_class(params_to_optimize, lr=args.learning_rate)
|
||||
print('enable dadatation.')
|
||||
optimizer = dadaptation.DAdaptAdam(params_to_optimize, lr=1.0, decouple=True, weight_decay=0)
|
||||
|
||||
# dataloaderを準備する
|
||||
# DataLoaderのプロセス数:0はメインプロセスになる
|
||||
@ -176,8 +181,20 @@ def train(args):
|
||||
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
|
||||
|
||||
# lr schedulerを用意する
|
||||
lr_scheduler = diffusers.optimization.get_scheduler(
|
||||
args.lr_scheduler, optimizer, num_warmup_steps=args.lr_warmup_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps)
|
||||
# lr_scheduler = diffusers.optimization.get_scheduler(
|
||||
# args.lr_scheduler, optimizer, num_warmup_steps=args.lr_warmup_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps)
|
||||
|
||||
# For Adam
|
||||
# lr_scheduler = optim.lr_scheduler.LambdaLR(optimizer=optimizer,
|
||||
# lr_lambda=[lambda epoch: 1],
|
||||
# last_epoch=-1,
|
||||
# verbose=False)
|
||||
|
||||
# For SGD optim
|
||||
lr_scheduler = optim.lr_scheduler.LambdaLR(optimizer=optimizer,
|
||||
lr_lambda=[lambda epoch: 1],
|
||||
last_epoch=-1,
|
||||
verbose=True)
|
||||
|
||||
# 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする
|
||||
if args.full_fp16:
|
||||
@ -293,12 +310,16 @@ def train(args):
|
||||
|
||||
current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず
|
||||
if args.logging_dir is not None:
|
||||
logs = {"loss": current_loss, "lr": lr_scheduler.get_last_lr()[0]}
|
||||
# logs = {"loss": current_loss, "lr": lr_scheduler.get_last_lr()[0]}
|
||||
# accelerator.log(logs, step=global_step)
|
||||
logs = {"loss": current_loss, "dlr": optimizer.param_groups[0]['d']*optimizer.param_groups[0]['lr']}
|
||||
accelerator.log(logs, step=global_step)
|
||||
|
||||
loss_total += current_loss
|
||||
avr_loss = loss_total / (step+1)
|
||||
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
|
||||
# logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
|
||||
# progress_bar.set_postfix(**logs)
|
||||
logs = {"avg_loss": avr_loss, "dlr": optimizer.param_groups[0]['d']*optimizer.param_groups[0]['lr']} # , "lr": lr_scheduler.get_last_lr()[0]}
|
||||
progress_bar.set_postfix(**logs)
|
||||
|
||||
if global_step >= args.max_train_steps:
|
||||
|
@ -22,5 +22,7 @@ fairscale==0.4.13
|
||||
tensorflow==2.10.1
|
||||
huggingface-hub==0.12.0
|
||||
xformers @ https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl
|
||||
# for dadaptation
|
||||
dadaptation
|
||||
# for kohya_ss library
|
||||
.
|
@ -7,6 +7,7 @@
|
||||
import os
|
||||
import cv2
|
||||
import argparse
|
||||
import shutil
|
||||
|
||||
def aspect_ratio(img_path):
|
||||
"""Return aspect ratio of an image"""
|
||||
@ -19,7 +20,7 @@ def sort_images_by_aspect_ratio(path):
|
||||
"""Sort all images in a folder by aspect ratio"""
|
||||
images = []
|
||||
for filename in os.listdir(path):
|
||||
if filename.endswith(".jpg") or filename.endswith(".jpeg") or filename.endswith(".png"):
|
||||
if filename.endswith(".jpg") or filename.endswith(".jpeg") or filename.endswith(".png") or filename.endswith(".webp"):
|
||||
img_path = os.path.join(path, filename)
|
||||
images.append((img_path, aspect_ratio(img_path)))
|
||||
# sort the list of tuples based on the aspect ratio
|
||||
@ -38,9 +39,22 @@ def average_aspect_ratio(group):
|
||||
"""Calculate average aspect ratio for a group"""
|
||||
aspect_ratios = [aspect_ratio for _, aspect_ratio in group]
|
||||
avg_aspect_ratio = sum(aspect_ratios) / len(aspect_ratios)
|
||||
print(f"Average aspect ratio for group: {avg_aspect_ratio}")
|
||||
return avg_aspect_ratio
|
||||
|
||||
def center_crop_image(image, target_aspect_ratio):
|
||||
"""Crop the input image to the target aspect ratio.
|
||||
|
||||
The function calculates the crop region for the input image based on its current aspect ratio and the target aspect ratio.
|
||||
|
||||
Args:
|
||||
image: A numpy array representing the input image.
|
||||
target_aspect_ratio: A float representing the target aspect ratio.
|
||||
|
||||
Returns:
|
||||
A numpy array representing the cropped image.
|
||||
|
||||
"""
|
||||
height, width = image.shape[:2]
|
||||
current_aspect_ratio = float(width) / float(height)
|
||||
|
||||
@ -58,45 +72,111 @@ def center_crop_image(image, target_aspect_ratio):
|
||||
|
||||
return cropped_image
|
||||
|
||||
def save_cropped_images(group, folder_name, group_number, avg_aspect_ratio):
|
||||
def copy_related_files(img_path, save_path):
|
||||
"""
|
||||
Copy all files in the same directory as the input image that have the same base name as the input image to the
|
||||
output directory with the corresponding new filename.
|
||||
:param img_path: Path to the input image.
|
||||
:param save_path: Path to the output image.
|
||||
"""
|
||||
# Get the base filename and directory
|
||||
img_dir, img_basename = os.path.split(img_path)
|
||||
img_base, img_ext = os.path.splitext(img_basename)
|
||||
|
||||
save_dir, save_basename = os.path.split(save_path)
|
||||
save_base, save_ext = os.path.splitext(save_basename)
|
||||
|
||||
# Create the output directory if it does not exist
|
||||
if not os.path.exists(save_dir):
|
||||
os.makedirs(save_dir)
|
||||
|
||||
# Loop over all files in the same directory as the input image
|
||||
try:
|
||||
for filename in os.listdir(img_dir):
|
||||
# Skip files with the same name as the input image
|
||||
if filename == img_basename:
|
||||
continue
|
||||
|
||||
# Check if the file has the same base name as the input image
|
||||
file_base, file_ext = os.path.splitext(filename)
|
||||
if file_base == img_base:
|
||||
# Build the new filename and copy the file
|
||||
new_filename = os.path.join(save_dir, f"{save_base}{file_ext}")
|
||||
shutil.copy2(os.path.join(img_dir, filename), new_filename)
|
||||
except OSError as e:
|
||||
print(f"Error: {e}") # Handle errors from os.listdir()
|
||||
|
||||
def save_resized_cropped_images(group, folder_name, group_number, avg_aspect_ratio, use_original_name=False):
|
||||
"""Crop and resize all images in the input group to the smallest resolution, and save them to a folder.
|
||||
|
||||
Args:
|
||||
group: A list of tuples, where each tuple contains the path to an image and its aspect ratio.
|
||||
folder_name: A string representing the name of the folder to save the images to.
|
||||
group_number: An integer representing the group number.
|
||||
avg_aspect_ratio: A float representing the average aspect ratio of the images in the group.
|
||||
use_original_name: A boolean indicating whether to save the images with their original file names.
|
||||
|
||||
"""
|
||||
if not os.path.exists(folder_name):
|
||||
os.makedirs(folder_name)
|
||||
|
||||
# get the smallest size of the images
|
||||
small_height = 0
|
||||
small_width = 0
|
||||
smallest_res = 100000000
|
||||
for i, image in enumerate(group):
|
||||
img_path, aspect_ratio = image
|
||||
smallest_res = float("inf")
|
||||
for img_path, _ in group:
|
||||
image = cv2.imread(img_path)
|
||||
cropped_image = center_crop_image(image, avg_aspect_ratio)
|
||||
height, width = cropped_image.shape[:2]
|
||||
if smallest_res > height * width:
|
||||
small_height = height
|
||||
small_width = width
|
||||
smallest_res = height * width
|
||||
image_res = height * width
|
||||
if image_res < smallest_res:
|
||||
smallest_res = image_res
|
||||
small_height, small_width = height, width
|
||||
|
||||
# resize all images to the smallest resolution of the images in the group
|
||||
for i, image in enumerate(group):
|
||||
img_path, aspect_ratio = image
|
||||
for i, (img_path, aspect_ratio) in enumerate(group):
|
||||
image = cv2.imread(img_path)
|
||||
cropped_image = center_crop_image(image, avg_aspect_ratio)
|
||||
resized_image = cv2.resize(cropped_image, (small_width, small_height))
|
||||
save_path = os.path.join(folder_name, "group_{}_{}.jpg".format(group_number, i))
|
||||
if use_original_name:
|
||||
save_name = os.path.basename(img_path)
|
||||
else:
|
||||
save_name = f"group_{group_number}_{i}.jpg"
|
||||
save_path = os.path.join(folder_name, save_name)
|
||||
cv2.imwrite(save_path, resized_image)
|
||||
|
||||
# Copy matching files named the same as img_path to
|
||||
copy_related_files(img_path, save_path)
|
||||
|
||||
print(f"Saved {save_name} to {folder_name}")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description='Sort images and crop them based on aspect ratio')
|
||||
parser.add_argument('--path', type=str, help='Path to the directory containing images', required=True)
|
||||
parser.add_argument('--dst_path', type=str, help='Path to the directory to save the cropped images', required=True)
|
||||
parser.add_argument('--batch_size', type=int, help='Size of the batches to create', required=True)
|
||||
parser.add_argument('input_dir', type=str, help='Path to the directory containing images')
|
||||
parser.add_argument('output_dir', type=str, help='Path to the directory to save the cropped images')
|
||||
parser.add_argument('batch_size', type=int, help='Size of the batches to create')
|
||||
parser.add_argument('--use_original_name', action='store_true', help='Whether to use original file names for the saved images')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
sorted_images = sort_images_by_aspect_ratio(args.path)
|
||||
print(f"Sorting images by aspect ratio in {args.input_dir}...")
|
||||
if not os.path.exists(args.input_dir):
|
||||
print(f"Error: Input directory does not exist: {args.input_dir}")
|
||||
return
|
||||
|
||||
if not os.path.exists(args.output_dir):
|
||||
try:
|
||||
os.makedirs(args.output_dir)
|
||||
except OSError:
|
||||
print(f"Error: Failed to create output directory: {args.output_dir}")
|
||||
return
|
||||
|
||||
sorted_images = sort_images_by_aspect_ratio(args.input_dir)
|
||||
total_images = len(sorted_images)
|
||||
print(f'Total images: {total_images}')
|
||||
|
||||
if args.batch_size <= 0:
|
||||
print("Error: Batch size must be greater than 0")
|
||||
return
|
||||
|
||||
group_size = total_images // args.batch_size
|
||||
|
||||
@ -111,11 +191,18 @@ def main():
|
||||
|
||||
print('Creating groups...')
|
||||
groups = create_groups(sorted_images, group_size)
|
||||
|
||||
print(f"Created {len(groups)} groups")
|
||||
|
||||
print('Saving cropped and resize images...')
|
||||
for i, group in enumerate(groups):
|
||||
avg_aspect_ratio = average_aspect_ratio(group)
|
||||
save_cropped_images(group, args.dst_path, i+1, avg_aspect_ratio)
|
||||
print(f"Processing group {i+1} with {len(group)} images...")
|
||||
try:
|
||||
save_resized_cropped_images(group, args.output_dir, i+1, avg_aspect_ratio, args.use_original_name)
|
||||
except Exception as e:
|
||||
print(f"Error: Failed to save images in group {i+1}: {e}")
|
||||
|
||||
print('Done')
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
17
train_db.py
17
train_db.py
@ -206,6 +206,8 @@ def train(args):
|
||||
if accelerator.is_main_process:
|
||||
accelerator.init_trackers("dreambooth")
|
||||
|
||||
loss_list = []
|
||||
loss_total = 0.0
|
||||
for epoch in range(num_train_epochs):
|
||||
print(f"epoch {epoch+1}/{num_train_epochs}")
|
||||
train_dataset.set_current_epoch(epoch + 1)
|
||||
@ -216,7 +218,6 @@ def train(args):
|
||||
if args.gradient_checkpointing or global_step < args.stop_text_encoder_training:
|
||||
text_encoder.train()
|
||||
|
||||
loss_total = 0
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
# 指定したステップ数でText Encoderの学習を止める
|
||||
if global_step == args.stop_text_encoder_training:
|
||||
@ -233,10 +234,13 @@ def train(args):
|
||||
else:
|
||||
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
|
||||
latents = latents * 0.18215
|
||||
b_size = latents.shape[0]
|
||||
|
||||
# Sample noise that we'll add to the latents
|
||||
noise = torch.randn_like(latents, device=latents.device)
|
||||
b_size = latents.shape[0]
|
||||
if args.noise_offset:
|
||||
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
|
||||
noise += args.noise_offset * torch.randn((latents.shape[0], latents.shape[1], 1, 1), device=latents.device)
|
||||
|
||||
# Get the text embedding for conditioning
|
||||
with torch.set_grad_enabled(global_step < args.stop_text_encoder_training):
|
||||
@ -291,8 +295,13 @@ def train(args):
|
||||
logs = {"loss": current_loss, "lr": lr_scheduler.get_last_lr()[0]}
|
||||
accelerator.log(logs, step=global_step)
|
||||
|
||||
if epoch == 0:
|
||||
loss_list.append(current_loss)
|
||||
else:
|
||||
loss_total -= loss_list[step]
|
||||
loss_list[step] = current_loss
|
||||
loss_total += current_loss
|
||||
avr_loss = loss_total / (step+1)
|
||||
avr_loss = loss_total / len(loss_list)
|
||||
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
|
||||
progress_bar.set_postfix(**logs)
|
||||
|
||||
@ -300,7 +309,7 @@ def train(args):
|
||||
break
|
||||
|
||||
if args.logging_dir is not None:
|
||||
logs = {"epoch_loss": loss_total / len(train_dataloader)}
|
||||
logs = {"loss/epoch": loss_total / len(loss_list)}
|
||||
accelerator.log(logs, step=epoch+1)
|
||||
|
||||
accelerator.wait_for_everyone()
|
||||
|
@ -1,5 +1,7 @@
|
||||
from diffusers.optimization import SchedulerType, TYPE_TO_SCHEDULER_FUNCTION
|
||||
from torch.optim import Optimizer
|
||||
from torch.cuda.amp import autocast
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from typing import Optional, Union
|
||||
import importlib
|
||||
import argparse
|
||||
@ -154,7 +156,9 @@ def train(args):
|
||||
|
||||
# モデルを読み込む
|
||||
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype)
|
||||
|
||||
# unnecessary, but work on low-ram device
|
||||
text_encoder.to("cuda")
|
||||
unet.to("cuda")
|
||||
# モデルに xformers とか memory efficient attention を組み込む
|
||||
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
|
||||
|
||||
@ -258,17 +262,26 @@ def train(args):
|
||||
unet.requires_grad_(False)
|
||||
unet.to(accelerator.device, dtype=weight_dtype)
|
||||
text_encoder.requires_grad_(False)
|
||||
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
||||
text_encoder.to(accelerator.device)
|
||||
if args.gradient_checkpointing: # according to TI example in Diffusers, train is required
|
||||
unet.train()
|
||||
text_encoder.train()
|
||||
|
||||
# set top parameter requires_grad = True for gradient checkpointing works
|
||||
text_encoder.text_model.embeddings.requires_grad_(True)
|
||||
if type(text_encoder) == DDP:
|
||||
text_encoder.module.text_model.embeddings.requires_grad_(True)
|
||||
else:
|
||||
text_encoder.text_model.embeddings.requires_grad_(True)
|
||||
else:
|
||||
unet.eval()
|
||||
text_encoder.eval()
|
||||
|
||||
# support DistributedDataParallel
|
||||
if type(text_encoder) == DDP:
|
||||
text_encoder = text_encoder.module
|
||||
unet = unet.module
|
||||
network = network.module
|
||||
|
||||
network.prepare_grad_etc(text_encoder, unet)
|
||||
|
||||
if not cache_latents:
|
||||
@ -340,11 +353,13 @@ def train(args):
|
||||
"ss_max_bucket_reso": train_dataset.max_bucket_reso,
|
||||
"ss_seed": args.seed,
|
||||
"ss_keep_tokens": args.keep_tokens,
|
||||
"ss_noise_offset": args.noise_offset,
|
||||
"ss_dataset_dirs": json.dumps(train_dataset.dataset_dirs_info),
|
||||
"ss_reg_dataset_dirs": json.dumps(train_dataset.reg_dataset_dirs_info),
|
||||
"ss_tag_frequency": json.dumps(train_dataset.tag_frequency),
|
||||
"ss_bucket_info": json.dumps(train_dataset.bucket_info),
|
||||
"ss_training_comment": args.training_comment # will not be updated after training
|
||||
"ss_training_comment": args.training_comment, # will not be updated after training
|
||||
"ss_sd_scripts_commit_hash": train_util.get_git_revision_hash()
|
||||
}
|
||||
|
||||
# uncomment if another network is added
|
||||
@ -378,6 +393,8 @@ def train(args):
|
||||
if accelerator.is_main_process:
|
||||
accelerator.init_trackers("network_train")
|
||||
|
||||
loss_list = []
|
||||
loss_total = 0.0
|
||||
for epoch in range(num_train_epochs):
|
||||
print(f"epoch {epoch+1}/{num_train_epochs}")
|
||||
train_dataset.set_current_epoch(epoch + 1)
|
||||
@ -386,7 +403,6 @@ def train(args):
|
||||
|
||||
network.on_epoch_start(text_encoder, unet)
|
||||
|
||||
loss_total = 0
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
with accelerator.accumulate(network):
|
||||
with torch.no_grad():
|
||||
@ -405,6 +421,9 @@ def train(args):
|
||||
|
||||
# Sample noise that we'll add to the latents
|
||||
noise = torch.randn_like(latents, device=latents.device)
|
||||
if args.noise_offset:
|
||||
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
|
||||
noise += args.noise_offset * torch.randn((latents.shape[0], latents.shape[1], 1, 1), device=latents.device)
|
||||
|
||||
# Sample a random timestep for each image
|
||||
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
|
||||
@ -415,7 +434,8 @@ def train(args):
|
||||
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
||||
|
||||
# Predict the noise residual
|
||||
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
||||
with autocast():
|
||||
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
||||
|
||||
if args.v_parameterization:
|
||||
# v-parameterization training
|
||||
@ -446,8 +466,13 @@ def train(args):
|
||||
global_step += 1
|
||||
|
||||
current_loss = loss.detach().item()
|
||||
if epoch == 0:
|
||||
loss_list.append(current_loss)
|
||||
else:
|
||||
loss_total -= loss_list[step]
|
||||
loss_list[step] = current_loss
|
||||
loss_total += current_loss
|
||||
avr_loss = loss_total / (step+1)
|
||||
avr_loss = loss_total / len(loss_list)
|
||||
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
|
||||
progress_bar.set_postfix(**logs)
|
||||
|
||||
@ -459,7 +484,7 @@ def train(args):
|
||||
break
|
||||
|
||||
if args.logging_dir is not None:
|
||||
logs = {"loss/epoch": loss_total / len(train_dataloader)}
|
||||
logs = {"loss/epoch": loss_total / len(loss_list)}
|
||||
accelerator.log(logs, step=epoch+1)
|
||||
|
||||
accelerator.wait_for_everyone()
|
||||
|
@ -13,34 +13,41 @@ from diffusers import DDPMScheduler
|
||||
import library.train_util as train_util
|
||||
from library.train_util import DreamBoothDataset, FineTuningDataset
|
||||
|
||||
import torch.optim as optim
|
||||
import dadaptation
|
||||
|
||||
# imagenet_templates_small = [
|
||||
# "a photo of a {}",
|
||||
# "a rendering of a {}",
|
||||
# "a cropped photo of the {}",
|
||||
# "the photo of a {}",
|
||||
# "a photo of a clean {}",
|
||||
# "a photo of a dirty {}",
|
||||
# "a dark photo of the {}",
|
||||
# "a photo of my {}",
|
||||
# "a photo of the cool {}",
|
||||
# "a close-up photo of a {}",
|
||||
# "a bright photo of the {}",
|
||||
# "a cropped photo of a {}",
|
||||
# "a photo of the {}",
|
||||
# "a good photo of the {}",
|
||||
# "a photo of one {}",
|
||||
# "a close-up photo of the {}",
|
||||
# "a rendition of the {}",
|
||||
# "a photo of the clean {}",
|
||||
# "a rendition of a {}",
|
||||
# "a photo of a nice {}",
|
||||
# "a good photo of a {}",
|
||||
# "a photo of the nice {}",
|
||||
# "a photo of the small {}",
|
||||
# "a photo of the weird {}",
|
||||
# "a photo of the large {}",
|
||||
# "a photo of a cool {}",
|
||||
# "a photo of a small {}",
|
||||
# ]
|
||||
|
||||
imagenet_templates_small = [
|
||||
"a photo of a {}",
|
||||
"a rendering of a {}",
|
||||
"a cropped photo of the {}",
|
||||
"the photo of a {}",
|
||||
"a photo of a clean {}",
|
||||
"a photo of a dirty {}",
|
||||
"a dark photo of the {}",
|
||||
"a photo of my {}",
|
||||
"a photo of the cool {}",
|
||||
"a close-up photo of a {}",
|
||||
"a bright photo of the {}",
|
||||
"a cropped photo of a {}",
|
||||
"a photo of the {}",
|
||||
"a good photo of the {}",
|
||||
"a photo of one {}",
|
||||
"a close-up photo of the {}",
|
||||
"a rendition of the {}",
|
||||
"a photo of the clean {}",
|
||||
"a rendition of a {}",
|
||||
"a photo of a nice {}",
|
||||
"a good photo of a {}",
|
||||
"a photo of the nice {}",
|
||||
"a photo of the small {}",
|
||||
"a photo of the weird {}",
|
||||
"a photo of the large {}",
|
||||
"a photo of a cool {}",
|
||||
"a photo of a small {}",
|
||||
"{}",
|
||||
]
|
||||
|
||||
imagenet_style_templates_small = [
|
||||
@ -213,7 +220,12 @@ def train(args):
|
||||
trainable_params = text_encoder.get_input_embeddings().parameters()
|
||||
|
||||
# betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略
|
||||
optimizer = optimizer_class(trainable_params, lr=args.learning_rate)
|
||||
# optimizer = optimizer_class(trainable_params, lr=args.learning_rate)
|
||||
print('enable dadapation.')
|
||||
optimizer = dadaptation.DAdaptAdam(trainable_params, lr=1.0, decouple=True, weight_decay=0)
|
||||
# optimizer = dadaptation.DAdaptSGD(trainable_params, lr=1.0, weight_decay=0, d0=1e-6)
|
||||
# optimizer = dadaptation.DAdaptAdaGrad(trainable_params, lr=1.0, weight_decay=0, d0=1e-6)
|
||||
|
||||
|
||||
# dataloaderを準備する
|
||||
# DataLoaderのプロセス数:0はメインプロセスになる
|
||||
@ -227,8 +239,20 @@ def train(args):
|
||||
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
|
||||
|
||||
# lr schedulerを用意する
|
||||
lr_scheduler = diffusers.optimization.get_scheduler(
|
||||
args.lr_scheduler, optimizer, num_warmup_steps=args.lr_warmup_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps)
|
||||
# lr_scheduler = diffusers.optimization.get_scheduler(
|
||||
# args.lr_scheduler, optimizer, num_warmup_steps=args.lr_warmup_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps)
|
||||
|
||||
# For Adam
|
||||
lr_scheduler = optim.lr_scheduler.LambdaLR(optimizer=optimizer,
|
||||
lr_lambda=[lambda epoch: 1],
|
||||
last_epoch=-1,
|
||||
verbose=False)
|
||||
|
||||
# For SGD optim
|
||||
# lr_scheduler = optim.lr_scheduler.LambdaLR(optimizer=optimizer,
|
||||
# lr_lambda=[lambda epoch: 1],
|
||||
# last_epoch=-1,
|
||||
# verbose=False)
|
||||
|
||||
# acceleratorがなんかよろしくやってくれるらしい
|
||||
text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||||
@ -366,12 +390,16 @@ def train(args):
|
||||
|
||||
current_loss = loss.detach().item()
|
||||
if args.logging_dir is not None:
|
||||
logs = {"loss": current_loss, "lr": lr_scheduler.get_last_lr()[0]}
|
||||
#logs = {"loss": current_loss, "lr": lr_scheduler.get_last_lr()[0]}
|
||||
|
||||
avr_loss = loss_total / (step+1)
|
||||
logs = {"loss": avr_loss, "dlr0": optimizer.param_groups[0]['d']*optimizer.param_groups[0]['lr']}
|
||||
accelerator.log(logs, step=global_step)
|
||||
|
||||
loss_total += current_loss
|
||||
avr_loss = loss_total / (step+1)
|
||||
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
|
||||
# logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
|
||||
logs = {"loss": avr_loss, "dlr0": optimizer.param_groups[0]['d']*optimizer.param_groups[0]['lr']}
|
||||
progress_bar.set_postfix(**logs)
|
||||
|
||||
if global_step >= args.max_train_steps:
|
||||
|
Loading…
Reference in New Issue
Block a user