Merge pull request #27 from bmaltais/dev

Emergency fix for dreambooth_ui no longer working, sorry
This commit is contained in:
bmaltais 2023-01-06 07:13:39 -05:00 committed by GitHub
commit 4ad98ddea7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 157 additions and 7 deletions

View File

@ -30,7 +30,10 @@ Once you have created the LoRA network you can generate images via auto1111 by i
## Change history ## Change history
* 2023/01/05 (v19.2): * 2023/01/06 (v19.3.1):
- Emergency fix for dreambooth_ui no longer working, sorry
- Add LoRA network merge too GUI. Run `pip install -U -r requirements.txt` after pulling this new release.
* 2023/01/05 (v19.3):
- Add support for `--clip_skip` option - Add support for `--clip_skip` option
- Add missing `detect_face_rotate.py` to tools folder - Add missing `detect_face_rotate.py` to tools folder
- Add `gui.cmd` for easy start of GUI - Add `gui.cmd` for easy start of GUI

View File

@ -429,8 +429,8 @@ def train_model(
run_cmd += f' --resume={resume}' run_cmd += f' --resume={resume}'
if not float(prior_loss_weight) == 1.0: if not float(prior_loss_weight) == 1.0:
run_cmd += f' --prior_loss_weight={prior_loss_weight}' run_cmd += f' --prior_loss_weight={prior_loss_weight}'
if clip_skip > 1: if int(clip_skip) > 1:
run_cmd += f' --clip_skip={int(clip_skip)}' run_cmd += f' --clip_skip={str(clip_skip)}'
print(run_cmd) print(run_cmd)
# Run the command # Run the command

View File

@ -363,8 +363,8 @@ def train_model(
run_cmd += f' --save_precision={save_precision}' run_cmd += f' --save_precision={save_precision}'
if not save_model_as == 'same as source model': if not save_model_as == 'same as source model':
run_cmd += f' --save_model_as={save_model_as}' run_cmd += f' --save_model_as={save_model_as}'
if clip_skip > 1: if int(clip_skip) > 1:
run_cmd += f' --clip_skip={int(clip_skip)}' run_cmd += f' --clip_skip={str(clip_skip)}'
print(run_cmd) print(run_cmd)
# Run the command # Run the command

145
library/merge_lora_gui.py Normal file
View File

@ -0,0 +1,145 @@
import gradio as gr
from easygui import msgbox
import subprocess
import os
from .common_gui import get_folder_path, get_any_file_path
folder_symbol = '\U0001f4c2' # 📂
refresh_symbol = '\U0001f504' # 🔄
save_style_symbol = '\U0001f4be' # 💾
document_symbol = '\U0001F4C4' # 📄
def merge_lora(
lora_a_model, lora_b_model, ratio, save_to, precision, save_precision,
):
# Check for caption_text_input
if lora_a_model == '':
msgbox('Invalid model A file')
return
if lora_b_model == '':
msgbox('Invalid model B file')
return
# Check if source model exist
if not os.path.isfile(lora_a_model):
msgbox('The provided model A is not a file')
return
if not os.path.isfile(lora_b_model):
msgbox('The provided model B is not a file')
return
ratio_a = ratio
ratio_b = 1 - ratio
run_cmd = f'.\\venv\Scripts\python.exe "networks\merge_lora.py"'
run_cmd += f' --save_precision {save_precision}'
run_cmd += f' --precision {precision}'
run_cmd += f' --save_to {save_to}'
run_cmd += f' --models {lora_a_model} {lora_b_model}'
run_cmd += f' --ratios {ratio_a} {ratio_b}'
print(run_cmd)
# Run the command
subprocess.run(run_cmd)
###
# Gradio UI
###
def gradio_merge_lora_tab():
with gr.Tab('Merge LoRA'):
gr.Markdown(
'This utility can merge LoRA networks.'
)
# with gr.Row():
# sd_model = gr.Textbox(
# label='Stable Diffusion model',
# placeholder='(Optional) only select if mergind a LoRA into a ckpt or tensorflow model',
# interactive=True,
# )
# button_sd_model_dir = gr.Button(
# folder_symbol, elem_id='open_folder_small'
# )
# button_sd_model_dir.click(
# get_folder_path, outputs=sd_model
# )
# button_sd_model_file = gr.Button(
# document_symbol, elem_id='open_folder_small'
# )
# button_sd_model_file.click(
# get_any_file_path,
# inputs=[sd_model],
# outputs=sd_model,
# )
with gr.Row():
lora_a_model = gr.Textbox(
label='LoRA model "A"',
placeholder='Path to the LoRA A model',
interactive=True,
)
button_lora_a_model_file = gr.Button(
document_symbol, elem_id='open_folder_small'
)
button_lora_a_model_file.click(
get_any_file_path,
inputs=[lora_a_model],
outputs=lora_a_model,
)
lora_b_model = gr.Textbox(
label='LoRA model "B"',
placeholder='Path to the LoRA B model',
interactive=True,
)
button_lora_b_model_file = gr.Button(
document_symbol, elem_id='open_folder_small'
)
button_lora_b_model_file.click(
get_any_file_path,
inputs=[lora_b_model],
outputs=lora_b_model,
)
with gr.Row():
ratio = gr.Slider(label="Merge ratio (eg: 0.7 mean 70% of model A and 30% of model B", minimum=0, maximum=1, step=0.01, value=0.5,
interactive=True,)
with gr.Row():
save_to = gr.Textbox(
label='Save to',
placeholder='path for the file to save...',
interactive=True,
)
button_save_to = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
button_save_to.click(
get_any_file_path, inputs=save_to, outputs=save_to
)
precision = gr.Dropdown(
label='Merge precison',
choices=['fp16', 'bf16', 'float'],
value='float',
interactive=True,
)
save_precision = gr.Dropdown(
label='Save precison',
choices=['fp16', 'bf16', 'float'],
value='float',
interactive=True,
)
convert_button = gr.Button('Merge model')
convert_button.click(
merge_lora,
inputs=[lora_a_model, lora_b_model, ratio, save_to, precision, save_precision,
],
)

View File

@ -24,6 +24,7 @@ from library.dreambooth_folder_creation_gui import (
) )
from library.dataset_balancing_gui import gradio_dataset_balancing_tab from library.dataset_balancing_gui import gradio_dataset_balancing_tab
from library.utilities import utilities_tab from library.utilities import utilities_tab
from library.merge_lora_gui import gradio_merge_lora_tab
from easygui import msgbox from easygui import msgbox
folder_symbol = '\U0001f4c2' # 📂 folder_symbol = '\U0001f4c2' # 📂
@ -473,7 +474,7 @@ def train_model(
if not lora_network_weights == '': if not lora_network_weights == '':
run_cmd += f' --network_weights={lora_network_weights}' run_cmd += f' --network_weights={lora_network_weights}'
if int(clip_skip) > 1: if int(clip_skip) > 1:
run_cmd += f' --clip_skip={int(clip_skip)}' run_cmd += f' --clip_skip={str(clip_skip)}'
print(run_cmd) print(run_cmd)
# Run the command # Run the command
@ -779,7 +780,7 @@ def lora_tab(
# ) # )
network_dim = gr.Slider( network_dim = gr.Slider(
minimum=1, minimum=1,
maximum=32, maximum=128,
label='Network Dimension', label='Network Dimension',
value=4, value=4,
step=1, step=1,
@ -904,6 +905,7 @@ def lora_tab(
logging_dir_input=logging_dir_input, logging_dir_input=logging_dir_input,
) )
gradio_dataset_balancing_tab() gradio_dataset_balancing_tab()
gradio_merge_lora_tab()
button_run = gr.Button('Train model') button_run = gr.Button('Train model')