Complete training code refactoring

This commit is contained in:
bmaltais 2023-01-15 19:59:40 -05:00
parent 123cf4e3c5
commit 567221549f
4 changed files with 498 additions and 562 deletions

View File

@ -9,7 +9,6 @@ import math
import os
import subprocess
import pathlib
import shutil
import argparse
from library.common_gui import (
get_folder_path,
@ -19,9 +18,12 @@ from library.common_gui import (
get_saveasfile_path,
color_aug_changed,
save_inference_file,
set_pretrained_model_name_or_path_input,
gradio_advanced_training,
run_cmd_advanced_training,
run_cmd_training,
gradio_training,
gradio_config,
gradio_source_model,
)
from library.dreambooth_folder_creation_gui import (
gradio_dreambooth_folder_creation_tab,
@ -56,8 +58,8 @@ def save_configuration(
save_precision,
seed,
num_cpu_threads_per_process,
cache_latent,
caption_extention,
cache_latents,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
@ -77,8 +79,10 @@ def save_configuration(
output_name,
max_token_length,
max_train_epochs,
max_data_loader_n_workers,mem_eff_attn,
max_data_loader_n_workers,
mem_eff_attn,
gradient_accumulation_steps,
model_list,
):
# Get list of function parameters and values
parameters = list(locals().items())
@ -138,8 +142,8 @@ def open_configuration(
save_precision,
seed,
num_cpu_threads_per_process,
cache_latent,
caption_extention,
cache_latents,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
@ -159,8 +163,10 @@ def open_configuration(
output_name,
max_token_length,
max_train_epochs,
max_data_loader_n_workers,mem_eff_attn,
max_data_loader_n_workers,
mem_eff_attn,
gradient_accumulation_steps,
model_list,
):
# Get list of function parameters and values
parameters = list(locals().items())
@ -172,7 +178,7 @@ def open_configuration(
# load variables from JSON file
with open(file_path, 'r') as f:
my_data_db = json.load(f)
print("Loading config...")
print('Loading config...')
else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data_db = {}
@ -184,7 +190,7 @@ def open_configuration(
values.append(my_data_db.get(key, value))
return tuple(values)
def train_model(
pretrained_model_name_or_path,
v2,
@ -204,7 +210,7 @@ def train_model(
save_precision,
seed,
num_cpu_threads_per_process,
cache_latent,
cache_latents,
caption_extension,
enable_bucket,
gradient_checkpointing,
@ -225,8 +231,10 @@ def train_model(
output_name,
max_token_length,
max_train_epochs,
max_data_loader_n_workers,mem_eff_attn,
max_data_loader_n_workers,
mem_eff_attn,
gradient_accumulation_steps,
model_list, # Keep this. Yes, it is unused here but required given the common list used
):
if pretrained_model_name_or_path == '':
msgbox('Source model information is missing')
@ -321,8 +329,6 @@ def train_model(
run_cmd += ' --v2'
if v_parameterization:
run_cmd += ' --v_parameterization'
if cache_latent:
run_cmd += ' --cache_latents'
if enable_bucket:
run_cmd += ' --enable_bucket'
if no_token_padding:
@ -339,18 +345,7 @@ def train_model(
run_cmd += f' --reg_data_dir="{reg_data_dir}"'
run_cmd += f' --resolution={max_resolution}'
run_cmd += f' --output_dir="{output_dir}"'
run_cmd += f' --train_batch_size={train_batch_size}'
run_cmd += f' --learning_rate={learning_rate}'
run_cmd += f' --lr_scheduler={lr_scheduler}'
run_cmd += f' --lr_warmup_steps={lr_warmup_steps}'
run_cmd += f' --max_train_steps={max_train_steps}'
run_cmd += f' --mixed_precision={mixed_precision}'
run_cmd += f' --save_every_n_epochs={save_every_n_epochs}'
run_cmd += f' --seed={seed}'
run_cmd += f' --save_precision={save_precision}'
run_cmd += f' --logging_dir="{logging_dir}"'
if not caption_extension == '':
run_cmd += f' --caption_extension={caption_extension}'
if not stop_text_encoder_training == 0:
run_cmd += (
f' --stop_text_encoder_training={stop_text_encoder_training}'
@ -365,14 +360,31 @@ def train_model(
run_cmd += f' --vae="{vae}"'
if not output_name == '':
run_cmd += f' --output_name="{output_name}"'
if (int(max_token_length) > 75):
if int(max_token_length) > 75:
run_cmd += f' --max_token_length={max_token_length}'
if not max_train_epochs == '':
run_cmd += f' --max_train_epochs="{max_train_epochs}"'
if not max_data_loader_n_workers == '':
run_cmd += f' --max_data_loader_n_workers="{max_data_loader_n_workers}"'
run_cmd += (
f' --max_data_loader_n_workers="{max_data_loader_n_workers}"'
)
if int(gradient_accumulation_steps) > 1:
run_cmd += f' --gradient_accumulation_steps={int(gradient_accumulation_steps)}'
run_cmd += run_cmd_training(
learning_rate=learning_rate,
lr_scheduler=lr_scheduler,
lr_warmup_steps=lr_warmup_steps,
train_batch_size=train_batch_size,
max_train_steps=max_train_steps,
save_every_n_epochs=save_every_n_epochs,
mixed_precision=mixed_precision,
save_precision=save_precision,
seed=seed,
caption_extension=caption_extension,
cache_latents=cache_latents,
)
run_cmd += run_cmd_advanced_training(
max_train_epochs=max_train_epochs,
max_data_loader_n_workers=max_data_loader_n_workers,
@ -445,82 +457,20 @@ def dreambooth_tab(
dummy_db_true = gr.Label(value=True, visible=False)
dummy_db_false = gr.Label(value=False, visible=False)
gr.Markdown('Train a custom model using kohya dreambooth python code...')
with gr.Accordion('Configuration file', open=False):
with gr.Row():
button_open_config = gr.Button('Open 📂', elem_id='open_folder')
button_save_config = gr.Button('Save 💾', elem_id='open_folder')
button_save_as_config = gr.Button(
'Save as... 💾', elem_id='open_folder'
)
config_file_name = gr.Textbox(
label='',
placeholder="type the configuration file path or use the 'Open' button above to select it...",
interactive=True,
)
with gr.Tab('Source model'):
# Define the input elements
with gr.Row():
pretrained_model_name_or_path = gr.Textbox(
label='Pretrained model name or path',
placeholder='enter the path to custom model or name of pretrained model',
)
pretrained_model_name_or_path_file = gr.Button(
document_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_file.click(
get_any_file_path,
inputs=[pretrained_model_name_or_path],
outputs=pretrained_model_name_or_path,
)
pretrained_model_name_or_path_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_folder.click(
get_folder_path,
outputs=pretrained_model_name_or_path,
)
model_list = gr.Dropdown(
label='(Optional) Model Quick Pick',
choices=[
'custom',
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
'runwayml/stable-diffusion-v1-5',
'CompVis/stable-diffusion-v1-4',
],
)
save_model_as = gr.Dropdown(
label='Save trained model as',
choices=[
'same as source model',
'ckpt',
'diffusers',
'diffusers_safetensors',
'safetensors',
],
value='same as source model',
)
with gr.Row():
v2 = gr.Checkbox(label='v2', value=True)
v_parameterization = gr.Checkbox(
label='v_parameterization', value=False
)
pretrained_model_name_or_path.change(
remove_doublequote,
inputs=[pretrained_model_name_or_path],
outputs=[pretrained_model_name_or_path],
)
model_list.change(
set_pretrained_model_name_or_path_input,
inputs=[model_list, v2, v_parameterization],
outputs=[
pretrained_model_name_or_path,
v2,
v_parameterization,
],
)
(
button_open_config,
button_save_config,
button_save_as_config,
config_file_name,
) = gradio_config()
(
pretrained_model_name_or_path,
v2,
v_parameterization,
save_model_as,
model_list,
) = gradio_source_model()
with gr.Tab('Folders'):
with gr.Row():
@ -591,71 +541,30 @@ def dreambooth_tab(
outputs=[logging_dir],
)
with gr.Tab('Training parameters'):
(
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
num_cpu_threads_per_process,
seed,
caption_extension,
cache_latents,
) = gradio_training(
learning_rate_value='1e-5',
lr_scheduler_value='cosine',
lr_warmup_value='10',
)
with gr.Row():
learning_rate = gr.Textbox(label='Learning rate', value=1e-6)
lr_scheduler = gr.Dropdown(
label='LR Scheduler',
choices=[
'constant',
'constant_with_warmup',
'cosine',
'cosine_with_restarts',
'linear',
'polynomial',
],
value='constant',
)
lr_warmup = gr.Textbox(label='LR warmup', value=0)
with gr.Row():
train_batch_size = gr.Slider(
minimum=1,
maximum=32,
label='Train batch size',
value=1,
step=1,
)
epoch = gr.Textbox(label='Epoch', value=1)
save_every_n_epochs = gr.Textbox(
label='Save every N epochs', value=1
)
with gr.Row():
mixed_precision = gr.Dropdown(
label='Mixed precision',
choices=[
'no',
'fp16',
'bf16',
],
value='fp16',
)
save_precision = gr.Dropdown(
label='Save precision',
choices=[
'float',
'fp16',
'bf16',
],
value='fp16',
)
num_cpu_threads_per_process = gr.Slider(
minimum=1,
maximum=os.cpu_count(),
step=1,
label='Number of CPU threads per process',
value=os.cpu_count(),
)
with gr.Row():
seed = gr.Textbox(label='Seed', value=1234)
max_resolution = gr.Textbox(
label='Max resolution',
value='512,512',
placeholder='512,512',
)
with gr.Row():
caption_extention = gr.Textbox(
label='Caption Extension',
placeholder='(Optional) Extension for caption files. default: .caption',
)
stop_text_encoder_training = gr.Slider(
minimum=0,
maximum=100,
@ -663,9 +572,7 @@ def dreambooth_tab(
step=1,
label='Stop text encoder training',
)
with gr.Row():
enable_bucket = gr.Checkbox(label='Enable buckets', value=True)
cache_latent = gr.Checkbox(label='Cache latent', value=True)
with gr.Accordion('Advanced Configuration', open=False):
with gr.Row():
no_token_padding = gr.Checkbox(
@ -703,7 +610,7 @@ def dreambooth_tab(
color_aug.change(
color_aug_changed,
inputs=[color_aug],
outputs=[cache_latent],
outputs=[cache_latents],
)
with gr.Tab('Tools'):
gr.Markdown(
@ -737,8 +644,8 @@ def dreambooth_tab(
save_precision,
seed,
num_cpu_threads_per_process,
cache_latent,
caption_extention,
cache_latents,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
@ -758,8 +665,10 @@ def dreambooth_tab(
output_name,
max_token_length,
max_train_epochs,
max_data_loader_n_workers,mem_eff_attn,
max_data_loader_n_workers,
mem_eff_attn,
gradient_accumulation_steps,
model_list,
]
button_open_config.click(

View File

@ -4,17 +4,20 @@ import math
import os
import subprocess
import pathlib
import shutil
import argparse
from library.common_gui import (
get_folder_path,
get_file_path,
get_any_file_path,
get_saveasfile_path,
save_inference_file,
set_pretrained_model_name_or_path_input,
gradio_advanced_training,run_cmd_advanced_training,
gradio_advanced_training,
run_cmd_advanced_training,
gradio_training,
run_cmd_advanced_training,
gradio_config,
gradio_source_model,
color_aug_changed,
run_cmd_training,
)
from library.utilities import utilities_tab
@ -70,11 +73,16 @@ def save_configuration(
output_name,
max_token_length,
max_train_epochs,
max_data_loader_n_workers,full_fp16,color_aug,
max_data_loader_n_workers,
full_fp16,
color_aug,
model_list,
cache_latents,
use_latent_files,
):
# Get list of function parameters and values
parameters = list(locals().items())
original_file_path = file_path
save_as_bool = True if save_as.get('label') == 'True' else False
@ -155,11 +163,16 @@ def open_config_file(
output_name,
max_token_length,
max_train_epochs,
max_data_loader_n_workers,full_fp16,color_aug,
max_data_loader_n_workers,
full_fp16,
color_aug,
model_list,
cache_latents,
use_latent_files,
):
# Get list of function parameters and values
parameters = list(locals().items())
original_file_path = file_path
file_path = get_file_path(file_path)
@ -171,7 +184,7 @@ def open_config_file(
else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data_ft = {}
values = [file_path]
for key, value in parameters:
# Set the value in the dictionary to the corresponding value in `my_data_ft`, or the default value if not found
@ -225,7 +238,12 @@ def train_model(
output_name,
max_token_length,
max_train_epochs,
max_data_loader_n_workers,full_fp16,color_aug,
max_data_loader_n_workers,
full_fp16,
color_aug,
model_list, # Keep this. Yes, it is unused here but required given the common list used
cache_latents,
use_latent_files,
):
# create caption json file
if generate_caption_database:
@ -236,7 +254,7 @@ def train_model(
f'./venv/Scripts/python.exe finetune/merge_captions_to_metadata.py'
)
if caption_extension == '':
run_cmd += f' --caption_extension=".txt"'
run_cmd += f' --caption_extension=".caption"'
else:
run_cmd += f' --caption_extension={caption_extension}'
run_cmd += f' "{image_folder}"'
@ -305,21 +323,22 @@ def train_model(
run_cmd += (
f' --pretrained_model_name_or_path="{pretrained_model_name_or_path}"'
)
run_cmd += f' --in_json="{train_dir}/{latent_metadata_filename}"'
if use_latent_files == 'Yes':
run_cmd += f' --in_json="{train_dir}/{latent_metadata_filename}"'
else:
run_cmd += f' --in_json="{train_dir}/{caption_metadata_filename}"'
run_cmd += f' --train_data_dir="{image_folder}"'
run_cmd += f' --output_dir="{output_dir}"'
if not logging_dir == '':
run_cmd += f' --logging_dir="{logging_dir}"'
run_cmd += f' --train_batch_size={train_batch_size}'
run_cmd += f' --dataset_repeats={dataset_repeats}'
run_cmd += f' --learning_rate={learning_rate}'
run_cmd += f' --lr_scheduler={lr_scheduler}'
run_cmd += f' --lr_warmup_steps={lr_warmup_steps}'
run_cmd += f' --max_train_steps={max_train_steps}'
run_cmd += f' --mixed_precision={mixed_precision}'
run_cmd += f' --save_every_n_epochs={save_every_n_epochs}'
run_cmd += f' --seed={seed}'
run_cmd += f' --save_precision={save_precision}'
run_cmd += ' --enable_bucket'
run_cmd += f' --resolution={max_resolution}'
run_cmd += f' --min_bucket_reso={min_bucket_reso}'
run_cmd += f' --max_bucket_reso={max_bucket_reso}'
if not save_model_as == 'same as source model':
run_cmd += f' --save_model_as={save_model_as}'
if int(gradient_accumulation_steps) > 1:
@ -330,8 +349,23 @@ def train_model(
# run_cmd += f' --resume={resume}'
if not output_name == '':
run_cmd += f' --output_name="{output_name}"'
if (int(max_token_length) > 75):
if int(max_token_length) > 75:
run_cmd += f' --max_token_length={max_token_length}'
run_cmd += run_cmd_training(
learning_rate=learning_rate,
lr_scheduler=lr_scheduler,
lr_warmup_steps=lr_warmup_steps,
train_batch_size=train_batch_size,
max_train_steps=max_train_steps,
save_every_n_epochs=save_every_n_epochs,
mixed_precision=mixed_precision,
save_precision=save_precision,
seed=seed,
caption_extension=caption_extension,
cache_latents=cache_latents,
)
run_cmd += run_cmd_advanced_training(
max_train_epochs=max_train_epochs,
max_data_loader_n_workers=max_data_loader_n_workers,
@ -396,99 +430,34 @@ def finetune_tab():
dummy_ft_true = gr.Label(value=True, visible=False)
dummy_ft_false = gr.Label(value=False, visible=False)
gr.Markdown('Train a custom model using kohya finetune python code...')
with gr.Accordion('Configuration file', open=False):
with gr.Row():
button_open_config = gr.Button(
f'Open {folder_symbol}', elem_id='open_folder'
)
button_save_config = gr.Button(
f'Save {save_style_symbol}', elem_id='open_folder'
)
button_save_as_config = gr.Button(
f'Save as... {save_style_symbol}',
elem_id='open_folder',
)
config_file_name = gr.Textbox(
label='', placeholder='type file path or use buttons...'
)
config_file_name.change(
remove_doublequote,
inputs=[config_file_name],
outputs=[config_file_name],
)
with gr.Tab('Source model'):
# Define the input elements
with gr.Row():
pretrained_model_name_or_path_input = gr.Textbox(
label='Pretrained model name or path',
placeholder='enter the path to custom model or name of pretrained model',
)
pretrained_model_name_or_path_file = gr.Button(
document_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_file.click(
get_any_file_path,
inputs=pretrained_model_name_or_path_input,
outputs=pretrained_model_name_or_path_input,
)
pretrained_model_name_or_path_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_folder.click(
get_folder_path,
inputs=pretrained_model_name_or_path_input,
outputs=pretrained_model_name_or_path_input,
)
model_list = gr.Dropdown(
label='(Optional) Model Quick Pick',
choices=[
'custom',
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
'runwayml/stable-diffusion-v1-5',
'CompVis/stable-diffusion-v1-4',
],
)
save_model_as_dropdown = gr.Dropdown(
label='Save trained model as',
choices=[
'same as source model',
'ckpt',
'diffusers',
'diffusers_safetensors',
'safetensors',
],
value='same as source model',
)
with gr.Row():
v2_input = gr.Checkbox(label='v2', value=True)
v_parameterization_input = gr.Checkbox(
label='v_parameterization', value=False
)
model_list.change(
set_pretrained_model_name_or_path_input,
inputs=[model_list, v2_input, v_parameterization_input],
outputs=[
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
],
)
(
button_open_config,
button_save_config,
button_save_as_config,
config_file_name,
) = gradio_config()
(
pretrained_model_name_or_path,
v2,
v_parameterization,
save_model_as,
model_list,
) = gradio_source_model()
with gr.Tab('Folders'):
with gr.Row():
train_dir_input = gr.Textbox(
train_dir = gr.Textbox(
label='Training config folder',
placeholder='folder where the training configuration files will be saved',
)
train_dir_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
train_dir_folder.click(get_folder_path, outputs=train_dir_input)
train_dir_folder.click(get_folder_path, outputs=train_dir)
image_folder_input = gr.Textbox(
image_folder = gr.Textbox(
label='Training Image folder',
placeholder='folder where the training images are located',
)
@ -496,21 +465,19 @@ def finetune_tab():
folder_symbol, elem_id='open_folder_small'
)
image_folder_input_folder.click(
get_folder_path, outputs=image_folder_input
get_folder_path, outputs=image_folder
)
with gr.Row():
output_dir_input = gr.Textbox(
output_dir = gr.Textbox(
label='Model output folder',
placeholder='folder where the model will be saved',
)
output_dir_input_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
output_dir_input_folder.click(
get_folder_path, outputs=output_dir_input
)
output_dir_input_folder.click(get_folder_path, outputs=output_dir)
logging_dir_input = gr.Textbox(
logging_dir = gr.Textbox(
label='Logging folder',
placeholder='Optional: enable logging and output TensorBoard log to this folder',
)
@ -518,7 +485,7 @@ def finetune_tab():
folder_symbol, elem_id='open_folder_small'
)
logging_dir_input_folder.click(
get_folder_path, outputs=logging_dir_input
get_folder_path, outputs=logging_dir
)
with gr.Row():
output_name = gr.Textbox(
@ -527,24 +494,24 @@ def finetune_tab():
value='last',
interactive=True,
)
train_dir_input.change(
train_dir.change(
remove_doublequote,
inputs=[train_dir_input],
outputs=[train_dir_input],
inputs=[train_dir],
outputs=[train_dir],
)
image_folder_input.change(
image_folder.change(
remove_doublequote,
inputs=[image_folder_input],
outputs=[image_folder_input],
inputs=[image_folder],
outputs=[image_folder],
)
output_dir_input.change(
output_dir.change(
remove_doublequote,
inputs=[output_dir_input],
outputs=[output_dir_input],
inputs=[output_dir],
outputs=[output_dir],
)
with gr.Tab('Dataset preparation'):
with gr.Row():
max_resolution_input = gr.Textbox(
max_resolution = gr.Textbox(
label='Resolution (width,height)', value='512,512'
)
min_bucket_reso = gr.Textbox(
@ -554,6 +521,21 @@ def finetune_tab():
label='Max bucket resolution', value='1024'
)
batch_size = gr.Textbox(label='Batch size', value='1')
with gr.Row():
create_caption = gr.Checkbox(
label='Generate caption metadata', value=True
)
create_buckets = gr.Checkbox(
label='Generate image buckets metadata', value=True
)
use_latent_files = gr.Dropdown(
label='Use latent files',
choices=[
'No',
'Yes',
],
value='Yes',
)
with gr.Accordion('Advanced parameters', open=False):
with gr.Row():
caption_metadata_filename = gr.Textbox(
@ -564,69 +546,23 @@ def finetune_tab():
)
full_path = gr.Checkbox(label='Use full path', value=True)
with gr.Tab('Training parameters'):
(
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
num_cpu_threads_per_process,
seed,
caption_extension,
cache_latents,
) = gradio_training(learning_rate_value='1e-5')
with gr.Row():
learning_rate_input = gr.Textbox(label='Learning rate', value=1e-6)
lr_scheduler_input = gr.Dropdown(
label='LR Scheduler',
choices=[
'constant',
'constant_with_warmup',
'cosine',
'cosine_with_restarts',
'linear',
'polynomial',
],
value='constant',
)
lr_warmup_input = gr.Textbox(label='LR warmup', value=0)
with gr.Row():
dataset_repeats_input = gr.Textbox(
label='Dataset repeats', value=40
)
train_batch_size_input = gr.Slider(
minimum=1,
maximum=32,
label='Train batch size',
value=1,
step=1,
)
epoch_input = gr.Textbox(label='Epoch', value=1)
save_every_n_epochs_input = gr.Textbox(
label='Save every N epochs', value=1
)
with gr.Row():
mixed_precision_input = gr.Dropdown(
label='Mixed precision',
choices=[
'no',
'fp16',
'bf16',
],
value='fp16',
)
save_precision_input = gr.Dropdown(
label='Save precision',
choices=[
'float',
'fp16',
'bf16',
],
value='fp16',
)
num_cpu_threads_per_process_input = gr.Slider(
minimum=1,
maximum=os.cpu_count(),
step=1,
label='Number of CPU threads per process',
value=os.cpu_count(),
)
seed_input = gr.Textbox(label='Seed', value=1234)
with gr.Row():
caption_extention_input = gr.Textbox(
label='Caption Extension',
placeholder='(Optional) Extension for caption files. default: .txt',
)
train_text_encoder_input = gr.Checkbox(
dataset_repeats = gr.Textbox(label='Dataset repeats', value=40)
train_text_encoder = gr.Checkbox(
label='Train text encoder', value=True
)
with gr.Accordion('Advanced parameters', open=False):
@ -650,31 +586,23 @@ def finetune_tab():
max_train_epochs,
max_data_loader_n_workers,
) = gradio_advanced_training()
# color_aug.change(
# color_aug_changed,
# inputs=[color_aug],
# # outputs=[cache_latent], # Not applicable to fine_tune.py
# )
with gr.Box():
with gr.Row():
create_caption = gr.Checkbox(
label='Generate caption metadata', value=True
)
create_buckets = gr.Checkbox(
label='Generate image buckets metadata', value=True
color_aug.change(
color_aug_changed,
inputs=[color_aug],
outputs=[cache_latents], # Not applicable to fine_tune.py
)
button_run = gr.Button('Train model')
settings_list = [
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
train_dir_input,
image_folder_input,
output_dir_input,
logging_dir_input,
max_resolution_input,
pretrained_model_name_or_path,
v2,
v_parameterization,
train_dir,
image_folder,
output_dir,
logging_dir,
max_resolution,
min_bucket_reso,
max_bucket_reso,
batch_size,
@ -682,22 +610,22 @@ def finetune_tab():
caption_metadata_filename,
latent_metadata_filename,
full_path,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
dataset_repeats_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
train_text_encoder_input,
learning_rate,
lr_scheduler,
lr_warmup,
dataset_repeats,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
train_text_encoder,
create_caption,
create_buckets,
save_model_as_dropdown,
caption_extention_input,
save_model_as,
caption_extension,
use_8bit_adam,
xformers,
clip_skip,
@ -710,7 +638,12 @@ def finetune_tab():
output_name,
max_token_length,
max_train_epochs,
max_data_loader_n_workers,full_fp16,color_aug,
max_data_loader_n_workers,
full_fp16,
color_aug,
model_list,
cache_latents,
use_latent_files,
]
button_run.click(train_model, inputs=settings_list)

View File

@ -4,6 +4,10 @@ import gradio as gr
from easygui import msgbox
import shutil
folder_symbol = '\U0001f4c2' # 📂
refresh_symbol = '\U0001f504' # 🔄
save_style_symbol = '\U0001f4be' # 💾
document_symbol = '\U0001F4C4' # 📄
def get_dir_and_file(file_path):
dir_path, file_name = os.path.split(file_path)
@ -300,6 +304,208 @@ def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
###
### Gradio common GUI section
###
def gradio_config():
with gr.Accordion('Configuration file', open=False):
with gr.Row():
button_open_config = gr.Button('Open 📂', elem_id='open_folder')
button_save_config = gr.Button('Save 💾', elem_id='open_folder')
button_save_as_config = gr.Button(
'Save as... 💾', elem_id='open_folder'
)
config_file_name = gr.Textbox(
label='',
placeholder="type the configuration file path or use the 'Open' button above to select it...",
interactive=True,
)
return (button_open_config, button_save_config, button_save_as_config, config_file_name)
def gradio_source_model():
with gr.Tab('Source model'):
# Define the input elements
with gr.Row():
pretrained_model_name_or_path = gr.Textbox(
label='Pretrained model name or path',
placeholder='enter the path to custom model or name of pretrained model',
)
pretrained_model_name_or_path_file = gr.Button(
document_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_file.click(
get_any_file_path,
inputs=pretrained_model_name_or_path,
outputs=pretrained_model_name_or_path,
)
pretrained_model_name_or_path_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_folder.click(
get_folder_path,
inputs=pretrained_model_name_or_path,
outputs=pretrained_model_name_or_path,
)
model_list = gr.Dropdown(
label='(Optional) Model Quick Pick',
choices=[
'custom',
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
'runwayml/stable-diffusion-v1-5',
'CompVis/stable-diffusion-v1-4',
],
)
save_model_as = gr.Dropdown(
label='Save trained model as',
choices=[
'same as source model',
'ckpt',
'diffusers',
'diffusers_safetensors',
'safetensors',
],
value='same as source model',
)
with gr.Row():
v2 = gr.Checkbox(label='v2', value=True)
v_parameterization = gr.Checkbox(
label='v_parameterization', value=False
)
model_list.change(
set_pretrained_model_name_or_path_input,
inputs=[model_list, v2, v_parameterization],
outputs=[
pretrained_model_name_or_path,
v2,
v_parameterization,
],
)
return (pretrained_model_name_or_path, v2, v_parameterization, save_model_as, model_list)
def gradio_training(learning_rate_value='1e-6', lr_scheduler_value='constant', lr_warmup_value='0'):
with gr.Row():
train_batch_size = gr.Slider(
minimum=1,
maximum=32,
label='Train batch size',
value=1,
step=1,
)
epoch = gr.Textbox(label='Epoch', value=1)
save_every_n_epochs = gr.Textbox(
label='Save every N epochs', value=1
)
caption_extension = gr.Textbox(
label='Caption Extension',
placeholder='(Optional) Extension for caption files. default: .caption',
)
with gr.Row():
mixed_precision = gr.Dropdown(
label='Mixed precision',
choices=[
'no',
'fp16',
'bf16',
],
value='fp16',
)
save_precision = gr.Dropdown(
label='Save precision',
choices=[
'float',
'fp16',
'bf16',
],
value='fp16',
)
num_cpu_threads_per_process = gr.Slider(
minimum=1,
maximum=os.cpu_count(),
step=1,
label='Number of CPU threads per process',
value=os.cpu_count(),
)
seed = gr.Textbox(label='Seed', value=1234)
with gr.Row():
learning_rate = gr.Textbox(label='Learning rate', value=learning_rate_value)
lr_scheduler = gr.Dropdown(
label='LR Scheduler',
choices=[
'constant',
'constant_with_warmup',
'cosine',
'cosine_with_restarts',
'linear',
'polynomial',
],
value=lr_scheduler_value,
)
lr_warmup = gr.Textbox(label='LR warmup (% of steps)', value=lr_warmup_value)
cache_latents = gr.Checkbox(label='Cache latent', value=True)
return (
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
num_cpu_threads_per_process,
seed,
caption_extension,
cache_latents,
)
def run_cmd_training(**kwargs):
options = [
f' --learning_rate="{kwargs.get("learning_rate", "")}"'
if kwargs.get('learning_rate')
else '',
f' --lr_scheduler="{kwargs.get("lr_scheduler", "")}"'
if kwargs.get('lr_scheduler')
else '',
f' --lr_warmup_steps="{kwargs.get("lr_warmup_steps", "")}"'
if kwargs.get('lr_warmup_steps')
else '',
f' --train_batch_size="{kwargs.get("train_batch_size", "")}"'
if kwargs.get('train_batch_size')
else '',
f' --max_train_steps="{kwargs.get("max_train_steps", "")}"'
if kwargs.get('max_train_steps')
else '',
f' --save_every_n_epochs="{kwargs.get("save_every_n_epochs", "")}"'
if kwargs.get('save_every_n_epochs')
else '',
f' --mixed_precision="{kwargs.get("mixed_precision", "")}"'
if kwargs.get('mixed_precision')
else '',
f' --save_precision="{kwargs.get("save_precision", "")}"'
if kwargs.get('save_precision')
else '',
f' --seed="{kwargs.get("seed", "")}"'
if kwargs.get('seed')
else '',
f' --caption_extension="{kwargs.get("caption_extension", "")}"'
if kwargs.get('caption_extension')
else '',
' --cache_latents' if kwargs.get('cache_latents') else '',
]
run_cmd = ''.join(options)
return run_cmd
def gradio_advanced_training():
@ -368,7 +574,6 @@ def gradio_advanced_training():
max_data_loader_n_workers,
)
def run_cmd_advanced_training(**kwargs):
options = [
f' --max_train_epochs="{kwargs.get("max_train_epochs", "")}"'
@ -412,3 +617,4 @@ def run_cmd_advanced_training(**kwargs):
]
run_cmd = ''.join(options)
return run_cmd

View File

@ -9,7 +9,6 @@ import math
import os
import subprocess
import pathlib
import shutil
import argparse
from library.common_gui import (
get_folder_path,
@ -19,9 +18,12 @@ from library.common_gui import (
get_saveasfile_path,
color_aug_changed,
save_inference_file,
set_pretrained_model_name_or_path_input,
gradio_advanced_training,
run_cmd_advanced_training,
gradio_training,
gradio_config,
gradio_source_model,
run_cmd_training,
)
from library.dreambooth_folder_creation_gui import (
gradio_dreambooth_folder_creation_tab,
@ -48,6 +50,7 @@ def save_configuration(
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
@ -57,8 +60,8 @@ def save_configuration(
save_precision,
seed,
num_cpu_threads_per_process,
cache_latent,
caption_extention,
cache_latents,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
@ -134,6 +137,7 @@ def open_configuration(
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
@ -143,8 +147,8 @@ def open_configuration(
save_precision,
seed,
num_cpu_threads_per_process,
cache_latent,
caption_extention,
cache_latents,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
@ -204,6 +208,7 @@ def train_model(
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
@ -213,7 +218,7 @@ def train_model(
save_precision,
seed,
num_cpu_threads_per_process,
cache_latent,
cache_latents,
caption_extension,
enable_bucket,
gradient_checkpointing,
@ -336,8 +341,6 @@ def train_model(
run_cmd += ' --v2'
if v_parameterization:
run_cmd += ' --v_parameterization'
if cache_latent:
run_cmd += ' --cache_latents'
if enable_bucket:
run_cmd += ' --enable_bucket'
if no_token_padding:
@ -350,28 +353,15 @@ def train_model(
run_cmd += f' --reg_data_dir="{reg_data_dir}"'
run_cmd += f' --resolution={max_resolution}'
run_cmd += f' --output_dir="{output_dir}"'
run_cmd += f' --train_batch_size={train_batch_size}'
# run_cmd += f' --learning_rate={learning_rate}'
run_cmd += f' --lr_scheduler={lr_scheduler}'
run_cmd += f' --lr_warmup_steps={lr_warmup_steps}'
run_cmd += f' --max_train_steps={max_train_steps}'
run_cmd += f' --use_8bit_adam'
run_cmd += f' --xformers'
run_cmd += f' --mixed_precision={mixed_precision}'
run_cmd += f' --save_every_n_epochs={save_every_n_epochs}'
run_cmd += f' --seed={seed}'
run_cmd += f' --save_precision={save_precision}'
run_cmd += f' --logging_dir="{logging_dir}"'
if not caption_extension == '':
run_cmd += f' --caption_extension={caption_extension}'
if not stop_text_encoder_training == 0:
run_cmd += (
f' --stop_text_encoder_training={stop_text_encoder_training}'
)
if not save_model_as == 'same as source model':
run_cmd += f' --save_model_as={save_model_as}'
# if not resume == '':
# run_cmd += f' --resume="{resume}"'
if not float(prior_loss_weight) == 1.0:
run_cmd += f' --prior_loss_weight={prior_loss_weight}'
run_cmd += f' --network_module=networks.lora'
@ -383,21 +373,28 @@ def train_model(
run_cmd += f' --unet_lr={unet_lr}'
else:
run_cmd += f' --network_train_text_encoder_only'
# if network_train == 'Text encoder only':
# run_cmd += f' --network_train_text_encoder_only'
# elif network_train == 'Unet only':
# run_cmd += f' --network_train_unet_only'
run_cmd += f' --network_dim={network_dim}'
if not lora_network_weights == '':
run_cmd += f' --network_weights="{lora_network_weights}"'
if int(gradient_accumulation_steps) > 1:
run_cmd += f' --gradient_accumulation_steps={int(gradient_accumulation_steps)}'
# if not vae == '':
# run_cmd += f' --vae="{vae}"'
if not output_name == '':
run_cmd += f' --output_name="{output_name}"'
# if (int(max_token_length) > 75):
# run_cmd += f' --max_token_length={max_token_length}'
run_cmd += run_cmd_training(
learning_rate=learning_rate,
lr_scheduler=lr_scheduler,
lr_warmup_steps=lr_warmup_steps,
train_batch_size=train_batch_size,
max_train_steps=max_train_steps,
save_every_n_epochs=save_every_n_epochs,
mixed_precision=mixed_precision,
save_precision=save_precision,
seed=seed,
caption_extension=caption_extension,
cache_latents=cache_latents,
)
run_cmd += run_cmd_advanced_training(
max_train_epochs=max_train_epochs,
max_data_loader_n_workers=max_data_loader_n_workers,
@ -472,88 +469,20 @@ def lora_tab(
gr.Markdown(
'Train a custom model using kohya train network LoRA python code...'
)
with gr.Accordion('Configuration file', open=False):
with gr.Row():
button_open_config = gr.Button('Open 📂', elem_id='open_folder')
button_save_config = gr.Button('Save 💾', elem_id='open_folder')
button_save_as_config = gr.Button(
'Save as... 💾', elem_id='open_folder'
)
config_file_name = gr.Textbox(
label='',
placeholder="type the configuration file path or use the 'Open' button above to select it...",
interactive=True,
)
# config_file_name.change(
# remove_doublequote,
# inputs=[config_file_name],
# outputs=[config_file_name],
# )
with gr.Tab('Source model'):
# Define the input elements
with gr.Row():
pretrained_model_name_or_path = gr.Textbox(
label='Pretrained model name or path',
placeholder='enter the path to custom model or name of pretrained model',
)
pretrained_model_name_or_path_file = gr.Button(
document_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_file.click(
get_any_file_path,
inputs=[pretrained_model_name_or_path],
outputs=pretrained_model_name_or_path,
)
pretrained_model_name_or_path_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_folder.click(
get_folder_path,
outputs=pretrained_model_name_or_path,
)
model_list = gr.Dropdown(
label='(Optional) Model Quick Pick',
choices=[
'custom',
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
'runwayml/stable-diffusion-v1-5',
'CompVis/stable-diffusion-v1-4',
],
)
save_model_as_dropdown = gr.Dropdown(
label='Save trained model as',
choices=[
'same as source model',
'ckpt',
'diffusers',
'diffusers_safetensors',
'safetensors',
],
value='same as source model',
)
(
button_open_config,
button_save_config,
button_save_as_config,
config_file_name,
) = gradio_config()
with gr.Row():
v2 = gr.Checkbox(label='v2', value=True)
v_parameterization = gr.Checkbox(
label='v_parameterization', value=False
)
pretrained_model_name_or_path.change(
remove_doublequote,
inputs=[pretrained_model_name_or_path],
outputs=[pretrained_model_name_or_path],
)
model_list.change(
set_pretrained_model_name_or_path_input,
inputs=[model_list, v2, v_parameterization],
outputs=[
pretrained_model_name_or_path,
v2,
v_parameterization,
],
)
(
pretrained_model_name_or_path,
v2,
v_parameterization,
save_model_as,
model_list,
) = gradio_source_model()
with gr.Tab('Folders'):
with gr.Row():
@ -625,20 +554,24 @@ def lora_tab(
inputs=[lora_network_weights],
outputs=lora_network_weights,
)
with gr.Row():
lr_scheduler = gr.Dropdown(
label='LR Scheduler',
choices=[
'constant',
'constant_with_warmup',
'cosine',
'cosine_with_restarts',
'linear',
'polynomial',
],
value='cosine',
)
lr_warmup = gr.Textbox(label='LR warmup (% of steps)', value=10)
(
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
num_cpu_threads_per_process,
seed,
caption_extension,
cache_latents,
) = gradio_training(
learning_rate_value='1e-5',
lr_scheduler_value='cosine',
lr_warmup_value='10',
)
with gr.Row():
text_encoder_lr = gr.Textbox(
label='Text Encoder learning rate',
@ -659,55 +592,11 @@ def lora_tab(
interactive=True,
)
with gr.Row():
train_batch_size = gr.Slider(
minimum=1,
maximum=32,
label='Train batch size',
value=1,
step=1,
)
epoch = gr.Textbox(label='Epoch', value=1)
save_every_n_epochs = gr.Textbox(
label='Save every N epochs', value=1
)
with gr.Row():
mixed_precision = gr.Dropdown(
label='Mixed precision',
choices=[
'no',
'fp16',
'bf16',
],
value='fp16',
)
save_precision = gr.Dropdown(
label='Save precision',
choices=[
'float',
'fp16',
'bf16',
],
value='fp16',
)
num_cpu_threads_per_process = gr.Slider(
minimum=1,
maximum=os.cpu_count(),
step=1,
label='Number of CPU threads per process',
value=os.cpu_count(),
)
with gr.Row():
seed = gr.Textbox(label='Seed', value=1234)
max_resolution = gr.Textbox(
label='Max resolution',
value='512,512',
placeholder='512,512',
)
with gr.Row():
caption_extention = gr.Textbox(
label='Caption Extension',
placeholder='(Optional) Extension for caption files. default: .caption',
)
stop_text_encoder_training = gr.Slider(
minimum=0,
maximum=100,
@ -715,9 +604,7 @@ def lora_tab(
step=1,
label='Stop text encoder training',
)
with gr.Row():
enable_bucket = gr.Checkbox(label='Enable buckets', value=True)
cache_latent = gr.Checkbox(label='Cache latent', value=True)
with gr.Accordion('Advanced Configuration', open=False):
with gr.Row():
no_token_padding = gr.Checkbox(
@ -749,7 +636,7 @@ def lora_tab(
color_aug.change(
color_aug_changed,
inputs=[color_aug],
outputs=[cache_latent],
outputs=[cache_latents],
)
with gr.Tab('Tools'):
@ -776,6 +663,7 @@ def lora_tab(
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
@ -785,8 +673,8 @@ def lora_tab(
save_precision,
seed,
num_cpu_threads_per_process,
cache_latent,
caption_extention,
cache_latents,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
@ -794,7 +682,7 @@ def lora_tab(
stop_text_encoder_training,
use_8bit_adam,
xformers,
save_model_as_dropdown,
save_model_as,
shuffle_caption,
save_state,
resume,