Complete training code refactoring
This commit is contained in:
parent
123cf4e3c5
commit
567221549f
@ -9,7 +9,6 @@ import math
|
|||||||
import os
|
import os
|
||||||
import subprocess
|
import subprocess
|
||||||
import pathlib
|
import pathlib
|
||||||
import shutil
|
|
||||||
import argparse
|
import argparse
|
||||||
from library.common_gui import (
|
from library.common_gui import (
|
||||||
get_folder_path,
|
get_folder_path,
|
||||||
@ -19,9 +18,12 @@ from library.common_gui import (
|
|||||||
get_saveasfile_path,
|
get_saveasfile_path,
|
||||||
color_aug_changed,
|
color_aug_changed,
|
||||||
save_inference_file,
|
save_inference_file,
|
||||||
set_pretrained_model_name_or_path_input,
|
|
||||||
gradio_advanced_training,
|
gradio_advanced_training,
|
||||||
run_cmd_advanced_training,
|
run_cmd_advanced_training,
|
||||||
|
run_cmd_training,
|
||||||
|
gradio_training,
|
||||||
|
gradio_config,
|
||||||
|
gradio_source_model,
|
||||||
)
|
)
|
||||||
from library.dreambooth_folder_creation_gui import (
|
from library.dreambooth_folder_creation_gui import (
|
||||||
gradio_dreambooth_folder_creation_tab,
|
gradio_dreambooth_folder_creation_tab,
|
||||||
@ -56,8 +58,8 @@ def save_configuration(
|
|||||||
save_precision,
|
save_precision,
|
||||||
seed,
|
seed,
|
||||||
num_cpu_threads_per_process,
|
num_cpu_threads_per_process,
|
||||||
cache_latent,
|
cache_latents,
|
||||||
caption_extention,
|
caption_extension,
|
||||||
enable_bucket,
|
enable_bucket,
|
||||||
gradient_checkpointing,
|
gradient_checkpointing,
|
||||||
full_fp16,
|
full_fp16,
|
||||||
@ -77,8 +79,10 @@ def save_configuration(
|
|||||||
output_name,
|
output_name,
|
||||||
max_token_length,
|
max_token_length,
|
||||||
max_train_epochs,
|
max_train_epochs,
|
||||||
max_data_loader_n_workers,mem_eff_attn,
|
max_data_loader_n_workers,
|
||||||
|
mem_eff_attn,
|
||||||
gradient_accumulation_steps,
|
gradient_accumulation_steps,
|
||||||
|
model_list,
|
||||||
):
|
):
|
||||||
# Get list of function parameters and values
|
# Get list of function parameters and values
|
||||||
parameters = list(locals().items())
|
parameters = list(locals().items())
|
||||||
@ -138,8 +142,8 @@ def open_configuration(
|
|||||||
save_precision,
|
save_precision,
|
||||||
seed,
|
seed,
|
||||||
num_cpu_threads_per_process,
|
num_cpu_threads_per_process,
|
||||||
cache_latent,
|
cache_latents,
|
||||||
caption_extention,
|
caption_extension,
|
||||||
enable_bucket,
|
enable_bucket,
|
||||||
gradient_checkpointing,
|
gradient_checkpointing,
|
||||||
full_fp16,
|
full_fp16,
|
||||||
@ -159,8 +163,10 @@ def open_configuration(
|
|||||||
output_name,
|
output_name,
|
||||||
max_token_length,
|
max_token_length,
|
||||||
max_train_epochs,
|
max_train_epochs,
|
||||||
max_data_loader_n_workers,mem_eff_attn,
|
max_data_loader_n_workers,
|
||||||
|
mem_eff_attn,
|
||||||
gradient_accumulation_steps,
|
gradient_accumulation_steps,
|
||||||
|
model_list,
|
||||||
):
|
):
|
||||||
# Get list of function parameters and values
|
# Get list of function parameters and values
|
||||||
parameters = list(locals().items())
|
parameters = list(locals().items())
|
||||||
@ -172,7 +178,7 @@ def open_configuration(
|
|||||||
# load variables from JSON file
|
# load variables from JSON file
|
||||||
with open(file_path, 'r') as f:
|
with open(file_path, 'r') as f:
|
||||||
my_data_db = json.load(f)
|
my_data_db = json.load(f)
|
||||||
print("Loading config...")
|
print('Loading config...')
|
||||||
else:
|
else:
|
||||||
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
|
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
|
||||||
my_data_db = {}
|
my_data_db = {}
|
||||||
@ -184,7 +190,7 @@ def open_configuration(
|
|||||||
values.append(my_data_db.get(key, value))
|
values.append(my_data_db.get(key, value))
|
||||||
return tuple(values)
|
return tuple(values)
|
||||||
|
|
||||||
|
|
||||||
def train_model(
|
def train_model(
|
||||||
pretrained_model_name_or_path,
|
pretrained_model_name_or_path,
|
||||||
v2,
|
v2,
|
||||||
@ -204,7 +210,7 @@ def train_model(
|
|||||||
save_precision,
|
save_precision,
|
||||||
seed,
|
seed,
|
||||||
num_cpu_threads_per_process,
|
num_cpu_threads_per_process,
|
||||||
cache_latent,
|
cache_latents,
|
||||||
caption_extension,
|
caption_extension,
|
||||||
enable_bucket,
|
enable_bucket,
|
||||||
gradient_checkpointing,
|
gradient_checkpointing,
|
||||||
@ -225,8 +231,10 @@ def train_model(
|
|||||||
output_name,
|
output_name,
|
||||||
max_token_length,
|
max_token_length,
|
||||||
max_train_epochs,
|
max_train_epochs,
|
||||||
max_data_loader_n_workers,mem_eff_attn,
|
max_data_loader_n_workers,
|
||||||
|
mem_eff_attn,
|
||||||
gradient_accumulation_steps,
|
gradient_accumulation_steps,
|
||||||
|
model_list, # Keep this. Yes, it is unused here but required given the common list used
|
||||||
):
|
):
|
||||||
if pretrained_model_name_or_path == '':
|
if pretrained_model_name_or_path == '':
|
||||||
msgbox('Source model information is missing')
|
msgbox('Source model information is missing')
|
||||||
@ -321,8 +329,6 @@ def train_model(
|
|||||||
run_cmd += ' --v2'
|
run_cmd += ' --v2'
|
||||||
if v_parameterization:
|
if v_parameterization:
|
||||||
run_cmd += ' --v_parameterization'
|
run_cmd += ' --v_parameterization'
|
||||||
if cache_latent:
|
|
||||||
run_cmd += ' --cache_latents'
|
|
||||||
if enable_bucket:
|
if enable_bucket:
|
||||||
run_cmd += ' --enable_bucket'
|
run_cmd += ' --enable_bucket'
|
||||||
if no_token_padding:
|
if no_token_padding:
|
||||||
@ -339,18 +345,7 @@ def train_model(
|
|||||||
run_cmd += f' --reg_data_dir="{reg_data_dir}"'
|
run_cmd += f' --reg_data_dir="{reg_data_dir}"'
|
||||||
run_cmd += f' --resolution={max_resolution}'
|
run_cmd += f' --resolution={max_resolution}'
|
||||||
run_cmd += f' --output_dir="{output_dir}"'
|
run_cmd += f' --output_dir="{output_dir}"'
|
||||||
run_cmd += f' --train_batch_size={train_batch_size}'
|
|
||||||
run_cmd += f' --learning_rate={learning_rate}'
|
|
||||||
run_cmd += f' --lr_scheduler={lr_scheduler}'
|
|
||||||
run_cmd += f' --lr_warmup_steps={lr_warmup_steps}'
|
|
||||||
run_cmd += f' --max_train_steps={max_train_steps}'
|
|
||||||
run_cmd += f' --mixed_precision={mixed_precision}'
|
|
||||||
run_cmd += f' --save_every_n_epochs={save_every_n_epochs}'
|
|
||||||
run_cmd += f' --seed={seed}'
|
|
||||||
run_cmd += f' --save_precision={save_precision}'
|
|
||||||
run_cmd += f' --logging_dir="{logging_dir}"'
|
run_cmd += f' --logging_dir="{logging_dir}"'
|
||||||
if not caption_extension == '':
|
|
||||||
run_cmd += f' --caption_extension={caption_extension}'
|
|
||||||
if not stop_text_encoder_training == 0:
|
if not stop_text_encoder_training == 0:
|
||||||
run_cmd += (
|
run_cmd += (
|
||||||
f' --stop_text_encoder_training={stop_text_encoder_training}'
|
f' --stop_text_encoder_training={stop_text_encoder_training}'
|
||||||
@ -365,14 +360,31 @@ def train_model(
|
|||||||
run_cmd += f' --vae="{vae}"'
|
run_cmd += f' --vae="{vae}"'
|
||||||
if not output_name == '':
|
if not output_name == '':
|
||||||
run_cmd += f' --output_name="{output_name}"'
|
run_cmd += f' --output_name="{output_name}"'
|
||||||
if (int(max_token_length) > 75):
|
if int(max_token_length) > 75:
|
||||||
run_cmd += f' --max_token_length={max_token_length}'
|
run_cmd += f' --max_token_length={max_token_length}'
|
||||||
if not max_train_epochs == '':
|
if not max_train_epochs == '':
|
||||||
run_cmd += f' --max_train_epochs="{max_train_epochs}"'
|
run_cmd += f' --max_train_epochs="{max_train_epochs}"'
|
||||||
if not max_data_loader_n_workers == '':
|
if not max_data_loader_n_workers == '':
|
||||||
run_cmd += f' --max_data_loader_n_workers="{max_data_loader_n_workers}"'
|
run_cmd += (
|
||||||
|
f' --max_data_loader_n_workers="{max_data_loader_n_workers}"'
|
||||||
|
)
|
||||||
if int(gradient_accumulation_steps) > 1:
|
if int(gradient_accumulation_steps) > 1:
|
||||||
run_cmd += f' --gradient_accumulation_steps={int(gradient_accumulation_steps)}'
|
run_cmd += f' --gradient_accumulation_steps={int(gradient_accumulation_steps)}'
|
||||||
|
|
||||||
|
run_cmd += run_cmd_training(
|
||||||
|
learning_rate=learning_rate,
|
||||||
|
lr_scheduler=lr_scheduler,
|
||||||
|
lr_warmup_steps=lr_warmup_steps,
|
||||||
|
train_batch_size=train_batch_size,
|
||||||
|
max_train_steps=max_train_steps,
|
||||||
|
save_every_n_epochs=save_every_n_epochs,
|
||||||
|
mixed_precision=mixed_precision,
|
||||||
|
save_precision=save_precision,
|
||||||
|
seed=seed,
|
||||||
|
caption_extension=caption_extension,
|
||||||
|
cache_latents=cache_latents,
|
||||||
|
)
|
||||||
|
|
||||||
run_cmd += run_cmd_advanced_training(
|
run_cmd += run_cmd_advanced_training(
|
||||||
max_train_epochs=max_train_epochs,
|
max_train_epochs=max_train_epochs,
|
||||||
max_data_loader_n_workers=max_data_loader_n_workers,
|
max_data_loader_n_workers=max_data_loader_n_workers,
|
||||||
@ -445,82 +457,20 @@ def dreambooth_tab(
|
|||||||
dummy_db_true = gr.Label(value=True, visible=False)
|
dummy_db_true = gr.Label(value=True, visible=False)
|
||||||
dummy_db_false = gr.Label(value=False, visible=False)
|
dummy_db_false = gr.Label(value=False, visible=False)
|
||||||
gr.Markdown('Train a custom model using kohya dreambooth python code...')
|
gr.Markdown('Train a custom model using kohya dreambooth python code...')
|
||||||
with gr.Accordion('Configuration file', open=False):
|
(
|
||||||
with gr.Row():
|
button_open_config,
|
||||||
button_open_config = gr.Button('Open 📂', elem_id='open_folder')
|
button_save_config,
|
||||||
button_save_config = gr.Button('Save 💾', elem_id='open_folder')
|
button_save_as_config,
|
||||||
button_save_as_config = gr.Button(
|
config_file_name,
|
||||||
'Save as... 💾', elem_id='open_folder'
|
) = gradio_config()
|
||||||
)
|
|
||||||
config_file_name = gr.Textbox(
|
(
|
||||||
label='',
|
pretrained_model_name_or_path,
|
||||||
placeholder="type the configuration file path or use the 'Open' button above to select it...",
|
v2,
|
||||||
interactive=True,
|
v_parameterization,
|
||||||
)
|
save_model_as,
|
||||||
with gr.Tab('Source model'):
|
model_list,
|
||||||
# Define the input elements
|
) = gradio_source_model()
|
||||||
with gr.Row():
|
|
||||||
pretrained_model_name_or_path = gr.Textbox(
|
|
||||||
label='Pretrained model name or path',
|
|
||||||
placeholder='enter the path to custom model or name of pretrained model',
|
|
||||||
)
|
|
||||||
pretrained_model_name_or_path_file = gr.Button(
|
|
||||||
document_symbol, elem_id='open_folder_small'
|
|
||||||
)
|
|
||||||
pretrained_model_name_or_path_file.click(
|
|
||||||
get_any_file_path,
|
|
||||||
inputs=[pretrained_model_name_or_path],
|
|
||||||
outputs=pretrained_model_name_or_path,
|
|
||||||
)
|
|
||||||
pretrained_model_name_or_path_folder = gr.Button(
|
|
||||||
folder_symbol, elem_id='open_folder_small'
|
|
||||||
)
|
|
||||||
pretrained_model_name_or_path_folder.click(
|
|
||||||
get_folder_path,
|
|
||||||
outputs=pretrained_model_name_or_path,
|
|
||||||
)
|
|
||||||
model_list = gr.Dropdown(
|
|
||||||
label='(Optional) Model Quick Pick',
|
|
||||||
choices=[
|
|
||||||
'custom',
|
|
||||||
'stabilityai/stable-diffusion-2-1-base',
|
|
||||||
'stabilityai/stable-diffusion-2-base',
|
|
||||||
'stabilityai/stable-diffusion-2-1',
|
|
||||||
'stabilityai/stable-diffusion-2',
|
|
||||||
'runwayml/stable-diffusion-v1-5',
|
|
||||||
'CompVis/stable-diffusion-v1-4',
|
|
||||||
],
|
|
||||||
)
|
|
||||||
save_model_as = gr.Dropdown(
|
|
||||||
label='Save trained model as',
|
|
||||||
choices=[
|
|
||||||
'same as source model',
|
|
||||||
'ckpt',
|
|
||||||
'diffusers',
|
|
||||||
'diffusers_safetensors',
|
|
||||||
'safetensors',
|
|
||||||
],
|
|
||||||
value='same as source model',
|
|
||||||
)
|
|
||||||
with gr.Row():
|
|
||||||
v2 = gr.Checkbox(label='v2', value=True)
|
|
||||||
v_parameterization = gr.Checkbox(
|
|
||||||
label='v_parameterization', value=False
|
|
||||||
)
|
|
||||||
pretrained_model_name_or_path.change(
|
|
||||||
remove_doublequote,
|
|
||||||
inputs=[pretrained_model_name_or_path],
|
|
||||||
outputs=[pretrained_model_name_or_path],
|
|
||||||
)
|
|
||||||
model_list.change(
|
|
||||||
set_pretrained_model_name_or_path_input,
|
|
||||||
inputs=[model_list, v2, v_parameterization],
|
|
||||||
outputs=[
|
|
||||||
pretrained_model_name_or_path,
|
|
||||||
v2,
|
|
||||||
v_parameterization,
|
|
||||||
],
|
|
||||||
)
|
|
||||||
|
|
||||||
with gr.Tab('Folders'):
|
with gr.Tab('Folders'):
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
@ -591,71 +541,30 @@ def dreambooth_tab(
|
|||||||
outputs=[logging_dir],
|
outputs=[logging_dir],
|
||||||
)
|
)
|
||||||
with gr.Tab('Training parameters'):
|
with gr.Tab('Training parameters'):
|
||||||
|
(
|
||||||
|
learning_rate,
|
||||||
|
lr_scheduler,
|
||||||
|
lr_warmup,
|
||||||
|
train_batch_size,
|
||||||
|
epoch,
|
||||||
|
save_every_n_epochs,
|
||||||
|
mixed_precision,
|
||||||
|
save_precision,
|
||||||
|
num_cpu_threads_per_process,
|
||||||
|
seed,
|
||||||
|
caption_extension,
|
||||||
|
cache_latents,
|
||||||
|
) = gradio_training(
|
||||||
|
learning_rate_value='1e-5',
|
||||||
|
lr_scheduler_value='cosine',
|
||||||
|
lr_warmup_value='10',
|
||||||
|
)
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
learning_rate = gr.Textbox(label='Learning rate', value=1e-6)
|
|
||||||
lr_scheduler = gr.Dropdown(
|
|
||||||
label='LR Scheduler',
|
|
||||||
choices=[
|
|
||||||
'constant',
|
|
||||||
'constant_with_warmup',
|
|
||||||
'cosine',
|
|
||||||
'cosine_with_restarts',
|
|
||||||
'linear',
|
|
||||||
'polynomial',
|
|
||||||
],
|
|
||||||
value='constant',
|
|
||||||
)
|
|
||||||
lr_warmup = gr.Textbox(label='LR warmup', value=0)
|
|
||||||
with gr.Row():
|
|
||||||
train_batch_size = gr.Slider(
|
|
||||||
minimum=1,
|
|
||||||
maximum=32,
|
|
||||||
label='Train batch size',
|
|
||||||
value=1,
|
|
||||||
step=1,
|
|
||||||
)
|
|
||||||
epoch = gr.Textbox(label='Epoch', value=1)
|
|
||||||
save_every_n_epochs = gr.Textbox(
|
|
||||||
label='Save every N epochs', value=1
|
|
||||||
)
|
|
||||||
with gr.Row():
|
|
||||||
mixed_precision = gr.Dropdown(
|
|
||||||
label='Mixed precision',
|
|
||||||
choices=[
|
|
||||||
'no',
|
|
||||||
'fp16',
|
|
||||||
'bf16',
|
|
||||||
],
|
|
||||||
value='fp16',
|
|
||||||
)
|
|
||||||
save_precision = gr.Dropdown(
|
|
||||||
label='Save precision',
|
|
||||||
choices=[
|
|
||||||
'float',
|
|
||||||
'fp16',
|
|
||||||
'bf16',
|
|
||||||
],
|
|
||||||
value='fp16',
|
|
||||||
)
|
|
||||||
num_cpu_threads_per_process = gr.Slider(
|
|
||||||
minimum=1,
|
|
||||||
maximum=os.cpu_count(),
|
|
||||||
step=1,
|
|
||||||
label='Number of CPU threads per process',
|
|
||||||
value=os.cpu_count(),
|
|
||||||
)
|
|
||||||
with gr.Row():
|
|
||||||
seed = gr.Textbox(label='Seed', value=1234)
|
|
||||||
max_resolution = gr.Textbox(
|
max_resolution = gr.Textbox(
|
||||||
label='Max resolution',
|
label='Max resolution',
|
||||||
value='512,512',
|
value='512,512',
|
||||||
placeholder='512,512',
|
placeholder='512,512',
|
||||||
)
|
)
|
||||||
with gr.Row():
|
|
||||||
caption_extention = gr.Textbox(
|
|
||||||
label='Caption Extension',
|
|
||||||
placeholder='(Optional) Extension for caption files. default: .caption',
|
|
||||||
)
|
|
||||||
stop_text_encoder_training = gr.Slider(
|
stop_text_encoder_training = gr.Slider(
|
||||||
minimum=0,
|
minimum=0,
|
||||||
maximum=100,
|
maximum=100,
|
||||||
@ -663,9 +572,7 @@ def dreambooth_tab(
|
|||||||
step=1,
|
step=1,
|
||||||
label='Stop text encoder training',
|
label='Stop text encoder training',
|
||||||
)
|
)
|
||||||
with gr.Row():
|
|
||||||
enable_bucket = gr.Checkbox(label='Enable buckets', value=True)
|
enable_bucket = gr.Checkbox(label='Enable buckets', value=True)
|
||||||
cache_latent = gr.Checkbox(label='Cache latent', value=True)
|
|
||||||
with gr.Accordion('Advanced Configuration', open=False):
|
with gr.Accordion('Advanced Configuration', open=False):
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
no_token_padding = gr.Checkbox(
|
no_token_padding = gr.Checkbox(
|
||||||
@ -703,7 +610,7 @@ def dreambooth_tab(
|
|||||||
color_aug.change(
|
color_aug.change(
|
||||||
color_aug_changed,
|
color_aug_changed,
|
||||||
inputs=[color_aug],
|
inputs=[color_aug],
|
||||||
outputs=[cache_latent],
|
outputs=[cache_latents],
|
||||||
)
|
)
|
||||||
with gr.Tab('Tools'):
|
with gr.Tab('Tools'):
|
||||||
gr.Markdown(
|
gr.Markdown(
|
||||||
@ -737,8 +644,8 @@ def dreambooth_tab(
|
|||||||
save_precision,
|
save_precision,
|
||||||
seed,
|
seed,
|
||||||
num_cpu_threads_per_process,
|
num_cpu_threads_per_process,
|
||||||
cache_latent,
|
cache_latents,
|
||||||
caption_extention,
|
caption_extension,
|
||||||
enable_bucket,
|
enable_bucket,
|
||||||
gradient_checkpointing,
|
gradient_checkpointing,
|
||||||
full_fp16,
|
full_fp16,
|
||||||
@ -758,8 +665,10 @@ def dreambooth_tab(
|
|||||||
output_name,
|
output_name,
|
||||||
max_token_length,
|
max_token_length,
|
||||||
max_train_epochs,
|
max_train_epochs,
|
||||||
max_data_loader_n_workers,mem_eff_attn,
|
max_data_loader_n_workers,
|
||||||
|
mem_eff_attn,
|
||||||
gradient_accumulation_steps,
|
gradient_accumulation_steps,
|
||||||
|
model_list,
|
||||||
]
|
]
|
||||||
|
|
||||||
button_open_config.click(
|
button_open_config.click(
|
||||||
|
369
finetune_gui.py
369
finetune_gui.py
@ -4,17 +4,20 @@ import math
|
|||||||
import os
|
import os
|
||||||
import subprocess
|
import subprocess
|
||||||
import pathlib
|
import pathlib
|
||||||
import shutil
|
|
||||||
import argparse
|
import argparse
|
||||||
from library.common_gui import (
|
from library.common_gui import (
|
||||||
get_folder_path,
|
get_folder_path,
|
||||||
get_file_path,
|
get_file_path,
|
||||||
get_any_file_path,
|
|
||||||
get_saveasfile_path,
|
get_saveasfile_path,
|
||||||
save_inference_file,
|
save_inference_file,
|
||||||
set_pretrained_model_name_or_path_input,
|
gradio_advanced_training,
|
||||||
gradio_advanced_training,run_cmd_advanced_training,
|
run_cmd_advanced_training,
|
||||||
|
gradio_training,
|
||||||
|
run_cmd_advanced_training,
|
||||||
|
gradio_config,
|
||||||
|
gradio_source_model,
|
||||||
color_aug_changed,
|
color_aug_changed,
|
||||||
|
run_cmd_training,
|
||||||
)
|
)
|
||||||
from library.utilities import utilities_tab
|
from library.utilities import utilities_tab
|
||||||
|
|
||||||
@ -70,11 +73,16 @@ def save_configuration(
|
|||||||
output_name,
|
output_name,
|
||||||
max_token_length,
|
max_token_length,
|
||||||
max_train_epochs,
|
max_train_epochs,
|
||||||
max_data_loader_n_workers,full_fp16,color_aug,
|
max_data_loader_n_workers,
|
||||||
|
full_fp16,
|
||||||
|
color_aug,
|
||||||
|
model_list,
|
||||||
|
cache_latents,
|
||||||
|
use_latent_files,
|
||||||
):
|
):
|
||||||
# Get list of function parameters and values
|
# Get list of function parameters and values
|
||||||
parameters = list(locals().items())
|
parameters = list(locals().items())
|
||||||
|
|
||||||
original_file_path = file_path
|
original_file_path = file_path
|
||||||
|
|
||||||
save_as_bool = True if save_as.get('label') == 'True' else False
|
save_as_bool = True if save_as.get('label') == 'True' else False
|
||||||
@ -155,11 +163,16 @@ def open_config_file(
|
|||||||
output_name,
|
output_name,
|
||||||
max_token_length,
|
max_token_length,
|
||||||
max_train_epochs,
|
max_train_epochs,
|
||||||
max_data_loader_n_workers,full_fp16,color_aug,
|
max_data_loader_n_workers,
|
||||||
|
full_fp16,
|
||||||
|
color_aug,
|
||||||
|
model_list,
|
||||||
|
cache_latents,
|
||||||
|
use_latent_files,
|
||||||
):
|
):
|
||||||
# Get list of function parameters and values
|
# Get list of function parameters and values
|
||||||
parameters = list(locals().items())
|
parameters = list(locals().items())
|
||||||
|
|
||||||
original_file_path = file_path
|
original_file_path = file_path
|
||||||
file_path = get_file_path(file_path)
|
file_path = get_file_path(file_path)
|
||||||
|
|
||||||
@ -171,7 +184,7 @@ def open_config_file(
|
|||||||
else:
|
else:
|
||||||
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
|
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
|
||||||
my_data_ft = {}
|
my_data_ft = {}
|
||||||
|
|
||||||
values = [file_path]
|
values = [file_path]
|
||||||
for key, value in parameters:
|
for key, value in parameters:
|
||||||
# Set the value in the dictionary to the corresponding value in `my_data_ft`, or the default value if not found
|
# Set the value in the dictionary to the corresponding value in `my_data_ft`, or the default value if not found
|
||||||
@ -225,7 +238,12 @@ def train_model(
|
|||||||
output_name,
|
output_name,
|
||||||
max_token_length,
|
max_token_length,
|
||||||
max_train_epochs,
|
max_train_epochs,
|
||||||
max_data_loader_n_workers,full_fp16,color_aug,
|
max_data_loader_n_workers,
|
||||||
|
full_fp16,
|
||||||
|
color_aug,
|
||||||
|
model_list, # Keep this. Yes, it is unused here but required given the common list used
|
||||||
|
cache_latents,
|
||||||
|
use_latent_files,
|
||||||
):
|
):
|
||||||
# create caption json file
|
# create caption json file
|
||||||
if generate_caption_database:
|
if generate_caption_database:
|
||||||
@ -236,7 +254,7 @@ def train_model(
|
|||||||
f'./venv/Scripts/python.exe finetune/merge_captions_to_metadata.py'
|
f'./venv/Scripts/python.exe finetune/merge_captions_to_metadata.py'
|
||||||
)
|
)
|
||||||
if caption_extension == '':
|
if caption_extension == '':
|
||||||
run_cmd += f' --caption_extension=".txt"'
|
run_cmd += f' --caption_extension=".caption"'
|
||||||
else:
|
else:
|
||||||
run_cmd += f' --caption_extension={caption_extension}'
|
run_cmd += f' --caption_extension={caption_extension}'
|
||||||
run_cmd += f' "{image_folder}"'
|
run_cmd += f' "{image_folder}"'
|
||||||
@ -305,21 +323,22 @@ def train_model(
|
|||||||
run_cmd += (
|
run_cmd += (
|
||||||
f' --pretrained_model_name_or_path="{pretrained_model_name_or_path}"'
|
f' --pretrained_model_name_or_path="{pretrained_model_name_or_path}"'
|
||||||
)
|
)
|
||||||
run_cmd += f' --in_json="{train_dir}/{latent_metadata_filename}"'
|
if use_latent_files == 'Yes':
|
||||||
|
run_cmd += f' --in_json="{train_dir}/{latent_metadata_filename}"'
|
||||||
|
else:
|
||||||
|
run_cmd += f' --in_json="{train_dir}/{caption_metadata_filename}"'
|
||||||
run_cmd += f' --train_data_dir="{image_folder}"'
|
run_cmd += f' --train_data_dir="{image_folder}"'
|
||||||
run_cmd += f' --output_dir="{output_dir}"'
|
run_cmd += f' --output_dir="{output_dir}"'
|
||||||
if not logging_dir == '':
|
if not logging_dir == '':
|
||||||
run_cmd += f' --logging_dir="{logging_dir}"'
|
run_cmd += f' --logging_dir="{logging_dir}"'
|
||||||
run_cmd += f' --train_batch_size={train_batch_size}'
|
|
||||||
run_cmd += f' --dataset_repeats={dataset_repeats}'
|
run_cmd += f' --dataset_repeats={dataset_repeats}'
|
||||||
run_cmd += f' --learning_rate={learning_rate}'
|
run_cmd += f' --learning_rate={learning_rate}'
|
||||||
run_cmd += f' --lr_scheduler={lr_scheduler}'
|
|
||||||
run_cmd += f' --lr_warmup_steps={lr_warmup_steps}'
|
run_cmd += ' --enable_bucket'
|
||||||
run_cmd += f' --max_train_steps={max_train_steps}'
|
run_cmd += f' --resolution={max_resolution}'
|
||||||
run_cmd += f' --mixed_precision={mixed_precision}'
|
run_cmd += f' --min_bucket_reso={min_bucket_reso}'
|
||||||
run_cmd += f' --save_every_n_epochs={save_every_n_epochs}'
|
run_cmd += f' --max_bucket_reso={max_bucket_reso}'
|
||||||
run_cmd += f' --seed={seed}'
|
|
||||||
run_cmd += f' --save_precision={save_precision}'
|
|
||||||
if not save_model_as == 'same as source model':
|
if not save_model_as == 'same as source model':
|
||||||
run_cmd += f' --save_model_as={save_model_as}'
|
run_cmd += f' --save_model_as={save_model_as}'
|
||||||
if int(gradient_accumulation_steps) > 1:
|
if int(gradient_accumulation_steps) > 1:
|
||||||
@ -330,8 +349,23 @@ def train_model(
|
|||||||
# run_cmd += f' --resume={resume}'
|
# run_cmd += f' --resume={resume}'
|
||||||
if not output_name == '':
|
if not output_name == '':
|
||||||
run_cmd += f' --output_name="{output_name}"'
|
run_cmd += f' --output_name="{output_name}"'
|
||||||
if (int(max_token_length) > 75):
|
if int(max_token_length) > 75:
|
||||||
run_cmd += f' --max_token_length={max_token_length}'
|
run_cmd += f' --max_token_length={max_token_length}'
|
||||||
|
|
||||||
|
run_cmd += run_cmd_training(
|
||||||
|
learning_rate=learning_rate,
|
||||||
|
lr_scheduler=lr_scheduler,
|
||||||
|
lr_warmup_steps=lr_warmup_steps,
|
||||||
|
train_batch_size=train_batch_size,
|
||||||
|
max_train_steps=max_train_steps,
|
||||||
|
save_every_n_epochs=save_every_n_epochs,
|
||||||
|
mixed_precision=mixed_precision,
|
||||||
|
save_precision=save_precision,
|
||||||
|
seed=seed,
|
||||||
|
caption_extension=caption_extension,
|
||||||
|
cache_latents=cache_latents,
|
||||||
|
)
|
||||||
|
|
||||||
run_cmd += run_cmd_advanced_training(
|
run_cmd += run_cmd_advanced_training(
|
||||||
max_train_epochs=max_train_epochs,
|
max_train_epochs=max_train_epochs,
|
||||||
max_data_loader_n_workers=max_data_loader_n_workers,
|
max_data_loader_n_workers=max_data_loader_n_workers,
|
||||||
@ -396,99 +430,34 @@ def finetune_tab():
|
|||||||
dummy_ft_true = gr.Label(value=True, visible=False)
|
dummy_ft_true = gr.Label(value=True, visible=False)
|
||||||
dummy_ft_false = gr.Label(value=False, visible=False)
|
dummy_ft_false = gr.Label(value=False, visible=False)
|
||||||
gr.Markdown('Train a custom model using kohya finetune python code...')
|
gr.Markdown('Train a custom model using kohya finetune python code...')
|
||||||
with gr.Accordion('Configuration file', open=False):
|
|
||||||
with gr.Row():
|
|
||||||
button_open_config = gr.Button(
|
|
||||||
f'Open {folder_symbol}', elem_id='open_folder'
|
|
||||||
)
|
|
||||||
button_save_config = gr.Button(
|
|
||||||
f'Save {save_style_symbol}', elem_id='open_folder'
|
|
||||||
)
|
|
||||||
button_save_as_config = gr.Button(
|
|
||||||
f'Save as... {save_style_symbol}',
|
|
||||||
elem_id='open_folder',
|
|
||||||
)
|
|
||||||
config_file_name = gr.Textbox(
|
|
||||||
label='', placeholder='type file path or use buttons...'
|
|
||||||
)
|
|
||||||
config_file_name.change(
|
|
||||||
remove_doublequote,
|
|
||||||
inputs=[config_file_name],
|
|
||||||
outputs=[config_file_name],
|
|
||||||
)
|
|
||||||
with gr.Tab('Source model'):
|
|
||||||
# Define the input elements
|
|
||||||
with gr.Row():
|
|
||||||
pretrained_model_name_or_path_input = gr.Textbox(
|
|
||||||
label='Pretrained model name or path',
|
|
||||||
placeholder='enter the path to custom model or name of pretrained model',
|
|
||||||
)
|
|
||||||
pretrained_model_name_or_path_file = gr.Button(
|
|
||||||
document_symbol, elem_id='open_folder_small'
|
|
||||||
)
|
|
||||||
pretrained_model_name_or_path_file.click(
|
|
||||||
get_any_file_path,
|
|
||||||
inputs=pretrained_model_name_or_path_input,
|
|
||||||
outputs=pretrained_model_name_or_path_input,
|
|
||||||
)
|
|
||||||
pretrained_model_name_or_path_folder = gr.Button(
|
|
||||||
folder_symbol, elem_id='open_folder_small'
|
|
||||||
)
|
|
||||||
pretrained_model_name_or_path_folder.click(
|
|
||||||
get_folder_path,
|
|
||||||
inputs=pretrained_model_name_or_path_input,
|
|
||||||
outputs=pretrained_model_name_or_path_input,
|
|
||||||
)
|
|
||||||
model_list = gr.Dropdown(
|
|
||||||
label='(Optional) Model Quick Pick',
|
|
||||||
choices=[
|
|
||||||
'custom',
|
|
||||||
'stabilityai/stable-diffusion-2-1-base',
|
|
||||||
'stabilityai/stable-diffusion-2-base',
|
|
||||||
'stabilityai/stable-diffusion-2-1',
|
|
||||||
'stabilityai/stable-diffusion-2',
|
|
||||||
'runwayml/stable-diffusion-v1-5',
|
|
||||||
'CompVis/stable-diffusion-v1-4',
|
|
||||||
],
|
|
||||||
)
|
|
||||||
save_model_as_dropdown = gr.Dropdown(
|
|
||||||
label='Save trained model as',
|
|
||||||
choices=[
|
|
||||||
'same as source model',
|
|
||||||
'ckpt',
|
|
||||||
'diffusers',
|
|
||||||
'diffusers_safetensors',
|
|
||||||
'safetensors',
|
|
||||||
],
|
|
||||||
value='same as source model',
|
|
||||||
)
|
|
||||||
|
|
||||||
with gr.Row():
|
(
|
||||||
v2_input = gr.Checkbox(label='v2', value=True)
|
button_open_config,
|
||||||
v_parameterization_input = gr.Checkbox(
|
button_save_config,
|
||||||
label='v_parameterization', value=False
|
button_save_as_config,
|
||||||
)
|
config_file_name,
|
||||||
model_list.change(
|
) = gradio_config()
|
||||||
set_pretrained_model_name_or_path_input,
|
|
||||||
inputs=[model_list, v2_input, v_parameterization_input],
|
(
|
||||||
outputs=[
|
pretrained_model_name_or_path,
|
||||||
pretrained_model_name_or_path_input,
|
v2,
|
||||||
v2_input,
|
v_parameterization,
|
||||||
v_parameterization_input,
|
save_model_as,
|
||||||
],
|
model_list,
|
||||||
)
|
) = gradio_source_model()
|
||||||
|
|
||||||
with gr.Tab('Folders'):
|
with gr.Tab('Folders'):
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
train_dir_input = gr.Textbox(
|
train_dir = gr.Textbox(
|
||||||
label='Training config folder',
|
label='Training config folder',
|
||||||
placeholder='folder where the training configuration files will be saved',
|
placeholder='folder where the training configuration files will be saved',
|
||||||
)
|
)
|
||||||
train_dir_folder = gr.Button(
|
train_dir_folder = gr.Button(
|
||||||
folder_symbol, elem_id='open_folder_small'
|
folder_symbol, elem_id='open_folder_small'
|
||||||
)
|
)
|
||||||
train_dir_folder.click(get_folder_path, outputs=train_dir_input)
|
train_dir_folder.click(get_folder_path, outputs=train_dir)
|
||||||
|
|
||||||
image_folder_input = gr.Textbox(
|
image_folder = gr.Textbox(
|
||||||
label='Training Image folder',
|
label='Training Image folder',
|
||||||
placeholder='folder where the training images are located',
|
placeholder='folder where the training images are located',
|
||||||
)
|
)
|
||||||
@ -496,21 +465,19 @@ def finetune_tab():
|
|||||||
folder_symbol, elem_id='open_folder_small'
|
folder_symbol, elem_id='open_folder_small'
|
||||||
)
|
)
|
||||||
image_folder_input_folder.click(
|
image_folder_input_folder.click(
|
||||||
get_folder_path, outputs=image_folder_input
|
get_folder_path, outputs=image_folder
|
||||||
)
|
)
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
output_dir_input = gr.Textbox(
|
output_dir = gr.Textbox(
|
||||||
label='Model output folder',
|
label='Model output folder',
|
||||||
placeholder='folder where the model will be saved',
|
placeholder='folder where the model will be saved',
|
||||||
)
|
)
|
||||||
output_dir_input_folder = gr.Button(
|
output_dir_input_folder = gr.Button(
|
||||||
folder_symbol, elem_id='open_folder_small'
|
folder_symbol, elem_id='open_folder_small'
|
||||||
)
|
)
|
||||||
output_dir_input_folder.click(
|
output_dir_input_folder.click(get_folder_path, outputs=output_dir)
|
||||||
get_folder_path, outputs=output_dir_input
|
|
||||||
)
|
|
||||||
|
|
||||||
logging_dir_input = gr.Textbox(
|
logging_dir = gr.Textbox(
|
||||||
label='Logging folder',
|
label='Logging folder',
|
||||||
placeholder='Optional: enable logging and output TensorBoard log to this folder',
|
placeholder='Optional: enable logging and output TensorBoard log to this folder',
|
||||||
)
|
)
|
||||||
@ -518,7 +485,7 @@ def finetune_tab():
|
|||||||
folder_symbol, elem_id='open_folder_small'
|
folder_symbol, elem_id='open_folder_small'
|
||||||
)
|
)
|
||||||
logging_dir_input_folder.click(
|
logging_dir_input_folder.click(
|
||||||
get_folder_path, outputs=logging_dir_input
|
get_folder_path, outputs=logging_dir
|
||||||
)
|
)
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
output_name = gr.Textbox(
|
output_name = gr.Textbox(
|
||||||
@ -527,24 +494,24 @@ def finetune_tab():
|
|||||||
value='last',
|
value='last',
|
||||||
interactive=True,
|
interactive=True,
|
||||||
)
|
)
|
||||||
train_dir_input.change(
|
train_dir.change(
|
||||||
remove_doublequote,
|
remove_doublequote,
|
||||||
inputs=[train_dir_input],
|
inputs=[train_dir],
|
||||||
outputs=[train_dir_input],
|
outputs=[train_dir],
|
||||||
)
|
)
|
||||||
image_folder_input.change(
|
image_folder.change(
|
||||||
remove_doublequote,
|
remove_doublequote,
|
||||||
inputs=[image_folder_input],
|
inputs=[image_folder],
|
||||||
outputs=[image_folder_input],
|
outputs=[image_folder],
|
||||||
)
|
)
|
||||||
output_dir_input.change(
|
output_dir.change(
|
||||||
remove_doublequote,
|
remove_doublequote,
|
||||||
inputs=[output_dir_input],
|
inputs=[output_dir],
|
||||||
outputs=[output_dir_input],
|
outputs=[output_dir],
|
||||||
)
|
)
|
||||||
with gr.Tab('Dataset preparation'):
|
with gr.Tab('Dataset preparation'):
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
max_resolution_input = gr.Textbox(
|
max_resolution = gr.Textbox(
|
||||||
label='Resolution (width,height)', value='512,512'
|
label='Resolution (width,height)', value='512,512'
|
||||||
)
|
)
|
||||||
min_bucket_reso = gr.Textbox(
|
min_bucket_reso = gr.Textbox(
|
||||||
@ -554,6 +521,21 @@ def finetune_tab():
|
|||||||
label='Max bucket resolution', value='1024'
|
label='Max bucket resolution', value='1024'
|
||||||
)
|
)
|
||||||
batch_size = gr.Textbox(label='Batch size', value='1')
|
batch_size = gr.Textbox(label='Batch size', value='1')
|
||||||
|
with gr.Row():
|
||||||
|
create_caption = gr.Checkbox(
|
||||||
|
label='Generate caption metadata', value=True
|
||||||
|
)
|
||||||
|
create_buckets = gr.Checkbox(
|
||||||
|
label='Generate image buckets metadata', value=True
|
||||||
|
)
|
||||||
|
use_latent_files = gr.Dropdown(
|
||||||
|
label='Use latent files',
|
||||||
|
choices=[
|
||||||
|
'No',
|
||||||
|
'Yes',
|
||||||
|
],
|
||||||
|
value='Yes',
|
||||||
|
)
|
||||||
with gr.Accordion('Advanced parameters', open=False):
|
with gr.Accordion('Advanced parameters', open=False):
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
caption_metadata_filename = gr.Textbox(
|
caption_metadata_filename = gr.Textbox(
|
||||||
@ -564,69 +546,23 @@ def finetune_tab():
|
|||||||
)
|
)
|
||||||
full_path = gr.Checkbox(label='Use full path', value=True)
|
full_path = gr.Checkbox(label='Use full path', value=True)
|
||||||
with gr.Tab('Training parameters'):
|
with gr.Tab('Training parameters'):
|
||||||
|
(
|
||||||
|
learning_rate,
|
||||||
|
lr_scheduler,
|
||||||
|
lr_warmup,
|
||||||
|
train_batch_size,
|
||||||
|
epoch,
|
||||||
|
save_every_n_epochs,
|
||||||
|
mixed_precision,
|
||||||
|
save_precision,
|
||||||
|
num_cpu_threads_per_process,
|
||||||
|
seed,
|
||||||
|
caption_extension,
|
||||||
|
cache_latents,
|
||||||
|
) = gradio_training(learning_rate_value='1e-5')
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
learning_rate_input = gr.Textbox(label='Learning rate', value=1e-6)
|
dataset_repeats = gr.Textbox(label='Dataset repeats', value=40)
|
||||||
lr_scheduler_input = gr.Dropdown(
|
train_text_encoder = gr.Checkbox(
|
||||||
label='LR Scheduler',
|
|
||||||
choices=[
|
|
||||||
'constant',
|
|
||||||
'constant_with_warmup',
|
|
||||||
'cosine',
|
|
||||||
'cosine_with_restarts',
|
|
||||||
'linear',
|
|
||||||
'polynomial',
|
|
||||||
],
|
|
||||||
value='constant',
|
|
||||||
)
|
|
||||||
lr_warmup_input = gr.Textbox(label='LR warmup', value=0)
|
|
||||||
with gr.Row():
|
|
||||||
dataset_repeats_input = gr.Textbox(
|
|
||||||
label='Dataset repeats', value=40
|
|
||||||
)
|
|
||||||
train_batch_size_input = gr.Slider(
|
|
||||||
minimum=1,
|
|
||||||
maximum=32,
|
|
||||||
label='Train batch size',
|
|
||||||
value=1,
|
|
||||||
step=1,
|
|
||||||
)
|
|
||||||
epoch_input = gr.Textbox(label='Epoch', value=1)
|
|
||||||
save_every_n_epochs_input = gr.Textbox(
|
|
||||||
label='Save every N epochs', value=1
|
|
||||||
)
|
|
||||||
with gr.Row():
|
|
||||||
mixed_precision_input = gr.Dropdown(
|
|
||||||
label='Mixed precision',
|
|
||||||
choices=[
|
|
||||||
'no',
|
|
||||||
'fp16',
|
|
||||||
'bf16',
|
|
||||||
],
|
|
||||||
value='fp16',
|
|
||||||
)
|
|
||||||
save_precision_input = gr.Dropdown(
|
|
||||||
label='Save precision',
|
|
||||||
choices=[
|
|
||||||
'float',
|
|
||||||
'fp16',
|
|
||||||
'bf16',
|
|
||||||
],
|
|
||||||
value='fp16',
|
|
||||||
)
|
|
||||||
num_cpu_threads_per_process_input = gr.Slider(
|
|
||||||
minimum=1,
|
|
||||||
maximum=os.cpu_count(),
|
|
||||||
step=1,
|
|
||||||
label='Number of CPU threads per process',
|
|
||||||
value=os.cpu_count(),
|
|
||||||
)
|
|
||||||
seed_input = gr.Textbox(label='Seed', value=1234)
|
|
||||||
with gr.Row():
|
|
||||||
caption_extention_input = gr.Textbox(
|
|
||||||
label='Caption Extension',
|
|
||||||
placeholder='(Optional) Extension for caption files. default: .txt',
|
|
||||||
)
|
|
||||||
train_text_encoder_input = gr.Checkbox(
|
|
||||||
label='Train text encoder', value=True
|
label='Train text encoder', value=True
|
||||||
)
|
)
|
||||||
with gr.Accordion('Advanced parameters', open=False):
|
with gr.Accordion('Advanced parameters', open=False):
|
||||||
@ -650,31 +586,23 @@ def finetune_tab():
|
|||||||
max_train_epochs,
|
max_train_epochs,
|
||||||
max_data_loader_n_workers,
|
max_data_loader_n_workers,
|
||||||
) = gradio_advanced_training()
|
) = gradio_advanced_training()
|
||||||
# color_aug.change(
|
color_aug.change(
|
||||||
# color_aug_changed,
|
color_aug_changed,
|
||||||
# inputs=[color_aug],
|
inputs=[color_aug],
|
||||||
# # outputs=[cache_latent], # Not applicable to fine_tune.py
|
outputs=[cache_latents], # Not applicable to fine_tune.py
|
||||||
# )
|
|
||||||
with gr.Box():
|
|
||||||
with gr.Row():
|
|
||||||
create_caption = gr.Checkbox(
|
|
||||||
label='Generate caption metadata', value=True
|
|
||||||
)
|
|
||||||
create_buckets = gr.Checkbox(
|
|
||||||
label='Generate image buckets metadata', value=True
|
|
||||||
)
|
)
|
||||||
|
|
||||||
button_run = gr.Button('Train model')
|
button_run = gr.Button('Train model')
|
||||||
|
|
||||||
settings_list = [
|
settings_list = [
|
||||||
pretrained_model_name_or_path_input,
|
pretrained_model_name_or_path,
|
||||||
v2_input,
|
v2,
|
||||||
v_parameterization_input,
|
v_parameterization,
|
||||||
train_dir_input,
|
train_dir,
|
||||||
image_folder_input,
|
image_folder,
|
||||||
output_dir_input,
|
output_dir,
|
||||||
logging_dir_input,
|
logging_dir,
|
||||||
max_resolution_input,
|
max_resolution,
|
||||||
min_bucket_reso,
|
min_bucket_reso,
|
||||||
max_bucket_reso,
|
max_bucket_reso,
|
||||||
batch_size,
|
batch_size,
|
||||||
@ -682,22 +610,22 @@ def finetune_tab():
|
|||||||
caption_metadata_filename,
|
caption_metadata_filename,
|
||||||
latent_metadata_filename,
|
latent_metadata_filename,
|
||||||
full_path,
|
full_path,
|
||||||
learning_rate_input,
|
learning_rate,
|
||||||
lr_scheduler_input,
|
lr_scheduler,
|
||||||
lr_warmup_input,
|
lr_warmup,
|
||||||
dataset_repeats_input,
|
dataset_repeats,
|
||||||
train_batch_size_input,
|
train_batch_size,
|
||||||
epoch_input,
|
epoch,
|
||||||
save_every_n_epochs_input,
|
save_every_n_epochs,
|
||||||
mixed_precision_input,
|
mixed_precision,
|
||||||
save_precision_input,
|
save_precision,
|
||||||
seed_input,
|
seed,
|
||||||
num_cpu_threads_per_process_input,
|
num_cpu_threads_per_process,
|
||||||
train_text_encoder_input,
|
train_text_encoder,
|
||||||
create_caption,
|
create_caption,
|
||||||
create_buckets,
|
create_buckets,
|
||||||
save_model_as_dropdown,
|
save_model_as,
|
||||||
caption_extention_input,
|
caption_extension,
|
||||||
use_8bit_adam,
|
use_8bit_adam,
|
||||||
xformers,
|
xformers,
|
||||||
clip_skip,
|
clip_skip,
|
||||||
@ -710,7 +638,12 @@ def finetune_tab():
|
|||||||
output_name,
|
output_name,
|
||||||
max_token_length,
|
max_token_length,
|
||||||
max_train_epochs,
|
max_train_epochs,
|
||||||
max_data_loader_n_workers,full_fp16,color_aug,
|
max_data_loader_n_workers,
|
||||||
|
full_fp16,
|
||||||
|
color_aug,
|
||||||
|
model_list,
|
||||||
|
cache_latents,
|
||||||
|
use_latent_files,
|
||||||
]
|
]
|
||||||
|
|
||||||
button_run.click(train_model, inputs=settings_list)
|
button_run.click(train_model, inputs=settings_list)
|
||||||
|
@ -4,6 +4,10 @@ import gradio as gr
|
|||||||
from easygui import msgbox
|
from easygui import msgbox
|
||||||
import shutil
|
import shutil
|
||||||
|
|
||||||
|
folder_symbol = '\U0001f4c2' # 📂
|
||||||
|
refresh_symbol = '\U0001f504' # 🔄
|
||||||
|
save_style_symbol = '\U0001f4be' # 💾
|
||||||
|
document_symbol = '\U0001F4C4' # 📄
|
||||||
|
|
||||||
def get_dir_and_file(file_path):
|
def get_dir_and_file(file_path):
|
||||||
dir_path, file_name = os.path.split(file_path)
|
dir_path, file_name = os.path.split(file_path)
|
||||||
@ -300,6 +304,208 @@ def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
|
|||||||
###
|
###
|
||||||
### Gradio common GUI section
|
### Gradio common GUI section
|
||||||
###
|
###
|
||||||
|
|
||||||
|
def gradio_config():
|
||||||
|
with gr.Accordion('Configuration file', open=False):
|
||||||
|
with gr.Row():
|
||||||
|
button_open_config = gr.Button('Open 📂', elem_id='open_folder')
|
||||||
|
button_save_config = gr.Button('Save 💾', elem_id='open_folder')
|
||||||
|
button_save_as_config = gr.Button(
|
||||||
|
'Save as... 💾', elem_id='open_folder'
|
||||||
|
)
|
||||||
|
config_file_name = gr.Textbox(
|
||||||
|
label='',
|
||||||
|
placeholder="type the configuration file path or use the 'Open' button above to select it...",
|
||||||
|
interactive=True,
|
||||||
|
)
|
||||||
|
return (button_open_config, button_save_config, button_save_as_config, config_file_name)
|
||||||
|
|
||||||
|
def gradio_source_model():
|
||||||
|
with gr.Tab('Source model'):
|
||||||
|
# Define the input elements
|
||||||
|
with gr.Row():
|
||||||
|
pretrained_model_name_or_path = gr.Textbox(
|
||||||
|
label='Pretrained model name or path',
|
||||||
|
placeholder='enter the path to custom model or name of pretrained model',
|
||||||
|
)
|
||||||
|
pretrained_model_name_or_path_file = gr.Button(
|
||||||
|
document_symbol, elem_id='open_folder_small'
|
||||||
|
)
|
||||||
|
pretrained_model_name_or_path_file.click(
|
||||||
|
get_any_file_path,
|
||||||
|
inputs=pretrained_model_name_or_path,
|
||||||
|
outputs=pretrained_model_name_or_path,
|
||||||
|
)
|
||||||
|
pretrained_model_name_or_path_folder = gr.Button(
|
||||||
|
folder_symbol, elem_id='open_folder_small'
|
||||||
|
)
|
||||||
|
pretrained_model_name_or_path_folder.click(
|
||||||
|
get_folder_path,
|
||||||
|
inputs=pretrained_model_name_or_path,
|
||||||
|
outputs=pretrained_model_name_or_path,
|
||||||
|
)
|
||||||
|
model_list = gr.Dropdown(
|
||||||
|
label='(Optional) Model Quick Pick',
|
||||||
|
choices=[
|
||||||
|
'custom',
|
||||||
|
'stabilityai/stable-diffusion-2-1-base',
|
||||||
|
'stabilityai/stable-diffusion-2-base',
|
||||||
|
'stabilityai/stable-diffusion-2-1',
|
||||||
|
'stabilityai/stable-diffusion-2',
|
||||||
|
'runwayml/stable-diffusion-v1-5',
|
||||||
|
'CompVis/stable-diffusion-v1-4',
|
||||||
|
],
|
||||||
|
)
|
||||||
|
save_model_as = gr.Dropdown(
|
||||||
|
label='Save trained model as',
|
||||||
|
choices=[
|
||||||
|
'same as source model',
|
||||||
|
'ckpt',
|
||||||
|
'diffusers',
|
||||||
|
'diffusers_safetensors',
|
||||||
|
'safetensors',
|
||||||
|
],
|
||||||
|
value='same as source model',
|
||||||
|
)
|
||||||
|
|
||||||
|
with gr.Row():
|
||||||
|
v2 = gr.Checkbox(label='v2', value=True)
|
||||||
|
v_parameterization = gr.Checkbox(
|
||||||
|
label='v_parameterization', value=False
|
||||||
|
)
|
||||||
|
model_list.change(
|
||||||
|
set_pretrained_model_name_or_path_input,
|
||||||
|
inputs=[model_list, v2, v_parameterization],
|
||||||
|
outputs=[
|
||||||
|
pretrained_model_name_or_path,
|
||||||
|
v2,
|
||||||
|
v_parameterization,
|
||||||
|
],
|
||||||
|
)
|
||||||
|
return (pretrained_model_name_or_path, v2, v_parameterization, save_model_as, model_list)
|
||||||
|
|
||||||
|
def gradio_training(learning_rate_value='1e-6', lr_scheduler_value='constant', lr_warmup_value='0'):
|
||||||
|
with gr.Row():
|
||||||
|
train_batch_size = gr.Slider(
|
||||||
|
minimum=1,
|
||||||
|
maximum=32,
|
||||||
|
label='Train batch size',
|
||||||
|
value=1,
|
||||||
|
step=1,
|
||||||
|
)
|
||||||
|
epoch = gr.Textbox(label='Epoch', value=1)
|
||||||
|
save_every_n_epochs = gr.Textbox(
|
||||||
|
label='Save every N epochs', value=1
|
||||||
|
)
|
||||||
|
caption_extension = gr.Textbox(
|
||||||
|
label='Caption Extension',
|
||||||
|
placeholder='(Optional) Extension for caption files. default: .caption',
|
||||||
|
)
|
||||||
|
with gr.Row():
|
||||||
|
mixed_precision = gr.Dropdown(
|
||||||
|
label='Mixed precision',
|
||||||
|
choices=[
|
||||||
|
'no',
|
||||||
|
'fp16',
|
||||||
|
'bf16',
|
||||||
|
],
|
||||||
|
value='fp16',
|
||||||
|
)
|
||||||
|
save_precision = gr.Dropdown(
|
||||||
|
label='Save precision',
|
||||||
|
choices=[
|
||||||
|
'float',
|
||||||
|
'fp16',
|
||||||
|
'bf16',
|
||||||
|
],
|
||||||
|
value='fp16',
|
||||||
|
)
|
||||||
|
num_cpu_threads_per_process = gr.Slider(
|
||||||
|
minimum=1,
|
||||||
|
maximum=os.cpu_count(),
|
||||||
|
step=1,
|
||||||
|
label='Number of CPU threads per process',
|
||||||
|
value=os.cpu_count(),
|
||||||
|
)
|
||||||
|
seed = gr.Textbox(label='Seed', value=1234)
|
||||||
|
with gr.Row():
|
||||||
|
learning_rate = gr.Textbox(label='Learning rate', value=learning_rate_value)
|
||||||
|
lr_scheduler = gr.Dropdown(
|
||||||
|
label='LR Scheduler',
|
||||||
|
choices=[
|
||||||
|
'constant',
|
||||||
|
'constant_with_warmup',
|
||||||
|
'cosine',
|
||||||
|
'cosine_with_restarts',
|
||||||
|
'linear',
|
||||||
|
'polynomial',
|
||||||
|
],
|
||||||
|
value=lr_scheduler_value,
|
||||||
|
)
|
||||||
|
lr_warmup = gr.Textbox(label='LR warmup (% of steps)', value=lr_warmup_value)
|
||||||
|
cache_latents = gr.Checkbox(label='Cache latent', value=True)
|
||||||
|
return (
|
||||||
|
learning_rate,
|
||||||
|
lr_scheduler,
|
||||||
|
lr_warmup,
|
||||||
|
train_batch_size,
|
||||||
|
epoch,
|
||||||
|
save_every_n_epochs,
|
||||||
|
mixed_precision,
|
||||||
|
save_precision,
|
||||||
|
num_cpu_threads_per_process,
|
||||||
|
seed,
|
||||||
|
caption_extension,
|
||||||
|
cache_latents,
|
||||||
|
)
|
||||||
|
|
||||||
|
def run_cmd_training(**kwargs):
|
||||||
|
options = [
|
||||||
|
f' --learning_rate="{kwargs.get("learning_rate", "")}"'
|
||||||
|
if kwargs.get('learning_rate')
|
||||||
|
else '',
|
||||||
|
|
||||||
|
f' --lr_scheduler="{kwargs.get("lr_scheduler", "")}"'
|
||||||
|
if kwargs.get('lr_scheduler')
|
||||||
|
else '',
|
||||||
|
|
||||||
|
f' --lr_warmup_steps="{kwargs.get("lr_warmup_steps", "")}"'
|
||||||
|
if kwargs.get('lr_warmup_steps')
|
||||||
|
else '',
|
||||||
|
|
||||||
|
f' --train_batch_size="{kwargs.get("train_batch_size", "")}"'
|
||||||
|
if kwargs.get('train_batch_size')
|
||||||
|
else '',
|
||||||
|
|
||||||
|
f' --max_train_steps="{kwargs.get("max_train_steps", "")}"'
|
||||||
|
if kwargs.get('max_train_steps')
|
||||||
|
else '',
|
||||||
|
|
||||||
|
f' --save_every_n_epochs="{kwargs.get("save_every_n_epochs", "")}"'
|
||||||
|
if kwargs.get('save_every_n_epochs')
|
||||||
|
else '',
|
||||||
|
|
||||||
|
f' --mixed_precision="{kwargs.get("mixed_precision", "")}"'
|
||||||
|
if kwargs.get('mixed_precision')
|
||||||
|
else '',
|
||||||
|
|
||||||
|
f' --save_precision="{kwargs.get("save_precision", "")}"'
|
||||||
|
if kwargs.get('save_precision')
|
||||||
|
else '',
|
||||||
|
|
||||||
|
f' --seed="{kwargs.get("seed", "")}"'
|
||||||
|
if kwargs.get('seed')
|
||||||
|
else '',
|
||||||
|
|
||||||
|
f' --caption_extension="{kwargs.get("caption_extension", "")}"'
|
||||||
|
if kwargs.get('caption_extension')
|
||||||
|
else '',
|
||||||
|
|
||||||
|
' --cache_latents' if kwargs.get('cache_latents') else '',
|
||||||
|
|
||||||
|
]
|
||||||
|
run_cmd = ''.join(options)
|
||||||
|
return run_cmd
|
||||||
|
|
||||||
|
|
||||||
def gradio_advanced_training():
|
def gradio_advanced_training():
|
||||||
@ -368,7 +574,6 @@ def gradio_advanced_training():
|
|||||||
max_data_loader_n_workers,
|
max_data_loader_n_workers,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def run_cmd_advanced_training(**kwargs):
|
def run_cmd_advanced_training(**kwargs):
|
||||||
options = [
|
options = [
|
||||||
f' --max_train_epochs="{kwargs.get("max_train_epochs", "")}"'
|
f' --max_train_epochs="{kwargs.get("max_train_epochs", "")}"'
|
||||||
@ -412,3 +617,4 @@ def run_cmd_advanced_training(**kwargs):
|
|||||||
]
|
]
|
||||||
run_cmd = ''.join(options)
|
run_cmd = ''.join(options)
|
||||||
return run_cmd
|
return run_cmd
|
||||||
|
|
||||||
|
238
lora_gui.py
238
lora_gui.py
@ -9,7 +9,6 @@ import math
|
|||||||
import os
|
import os
|
||||||
import subprocess
|
import subprocess
|
||||||
import pathlib
|
import pathlib
|
||||||
import shutil
|
|
||||||
import argparse
|
import argparse
|
||||||
from library.common_gui import (
|
from library.common_gui import (
|
||||||
get_folder_path,
|
get_folder_path,
|
||||||
@ -19,9 +18,12 @@ from library.common_gui import (
|
|||||||
get_saveasfile_path,
|
get_saveasfile_path,
|
||||||
color_aug_changed,
|
color_aug_changed,
|
||||||
save_inference_file,
|
save_inference_file,
|
||||||
set_pretrained_model_name_or_path_input,
|
|
||||||
gradio_advanced_training,
|
gradio_advanced_training,
|
||||||
run_cmd_advanced_training,
|
run_cmd_advanced_training,
|
||||||
|
gradio_training,
|
||||||
|
gradio_config,
|
||||||
|
gradio_source_model,
|
||||||
|
run_cmd_training,
|
||||||
)
|
)
|
||||||
from library.dreambooth_folder_creation_gui import (
|
from library.dreambooth_folder_creation_gui import (
|
||||||
gradio_dreambooth_folder_creation_tab,
|
gradio_dreambooth_folder_creation_tab,
|
||||||
@ -48,6 +50,7 @@ def save_configuration(
|
|||||||
reg_data_dir,
|
reg_data_dir,
|
||||||
output_dir,
|
output_dir,
|
||||||
max_resolution,
|
max_resolution,
|
||||||
|
learning_rate,
|
||||||
lr_scheduler,
|
lr_scheduler,
|
||||||
lr_warmup,
|
lr_warmup,
|
||||||
train_batch_size,
|
train_batch_size,
|
||||||
@ -57,8 +60,8 @@ def save_configuration(
|
|||||||
save_precision,
|
save_precision,
|
||||||
seed,
|
seed,
|
||||||
num_cpu_threads_per_process,
|
num_cpu_threads_per_process,
|
||||||
cache_latent,
|
cache_latents,
|
||||||
caption_extention,
|
caption_extension,
|
||||||
enable_bucket,
|
enable_bucket,
|
||||||
gradient_checkpointing,
|
gradient_checkpointing,
|
||||||
full_fp16,
|
full_fp16,
|
||||||
@ -134,6 +137,7 @@ def open_configuration(
|
|||||||
reg_data_dir,
|
reg_data_dir,
|
||||||
output_dir,
|
output_dir,
|
||||||
max_resolution,
|
max_resolution,
|
||||||
|
learning_rate,
|
||||||
lr_scheduler,
|
lr_scheduler,
|
||||||
lr_warmup,
|
lr_warmup,
|
||||||
train_batch_size,
|
train_batch_size,
|
||||||
@ -143,8 +147,8 @@ def open_configuration(
|
|||||||
save_precision,
|
save_precision,
|
||||||
seed,
|
seed,
|
||||||
num_cpu_threads_per_process,
|
num_cpu_threads_per_process,
|
||||||
cache_latent,
|
cache_latents,
|
||||||
caption_extention,
|
caption_extension,
|
||||||
enable_bucket,
|
enable_bucket,
|
||||||
gradient_checkpointing,
|
gradient_checkpointing,
|
||||||
full_fp16,
|
full_fp16,
|
||||||
@ -204,6 +208,7 @@ def train_model(
|
|||||||
reg_data_dir,
|
reg_data_dir,
|
||||||
output_dir,
|
output_dir,
|
||||||
max_resolution,
|
max_resolution,
|
||||||
|
learning_rate,
|
||||||
lr_scheduler,
|
lr_scheduler,
|
||||||
lr_warmup,
|
lr_warmup,
|
||||||
train_batch_size,
|
train_batch_size,
|
||||||
@ -213,7 +218,7 @@ def train_model(
|
|||||||
save_precision,
|
save_precision,
|
||||||
seed,
|
seed,
|
||||||
num_cpu_threads_per_process,
|
num_cpu_threads_per_process,
|
||||||
cache_latent,
|
cache_latents,
|
||||||
caption_extension,
|
caption_extension,
|
||||||
enable_bucket,
|
enable_bucket,
|
||||||
gradient_checkpointing,
|
gradient_checkpointing,
|
||||||
@ -336,8 +341,6 @@ def train_model(
|
|||||||
run_cmd += ' --v2'
|
run_cmd += ' --v2'
|
||||||
if v_parameterization:
|
if v_parameterization:
|
||||||
run_cmd += ' --v_parameterization'
|
run_cmd += ' --v_parameterization'
|
||||||
if cache_latent:
|
|
||||||
run_cmd += ' --cache_latents'
|
|
||||||
if enable_bucket:
|
if enable_bucket:
|
||||||
run_cmd += ' --enable_bucket'
|
run_cmd += ' --enable_bucket'
|
||||||
if no_token_padding:
|
if no_token_padding:
|
||||||
@ -350,28 +353,15 @@ def train_model(
|
|||||||
run_cmd += f' --reg_data_dir="{reg_data_dir}"'
|
run_cmd += f' --reg_data_dir="{reg_data_dir}"'
|
||||||
run_cmd += f' --resolution={max_resolution}'
|
run_cmd += f' --resolution={max_resolution}'
|
||||||
run_cmd += f' --output_dir="{output_dir}"'
|
run_cmd += f' --output_dir="{output_dir}"'
|
||||||
run_cmd += f' --train_batch_size={train_batch_size}'
|
|
||||||
# run_cmd += f' --learning_rate={learning_rate}'
|
|
||||||
run_cmd += f' --lr_scheduler={lr_scheduler}'
|
|
||||||
run_cmd += f' --lr_warmup_steps={lr_warmup_steps}'
|
|
||||||
run_cmd += f' --max_train_steps={max_train_steps}'
|
|
||||||
run_cmd += f' --use_8bit_adam'
|
run_cmd += f' --use_8bit_adam'
|
||||||
run_cmd += f' --xformers'
|
run_cmd += f' --xformers'
|
||||||
run_cmd += f' --mixed_precision={mixed_precision}'
|
|
||||||
run_cmd += f' --save_every_n_epochs={save_every_n_epochs}'
|
|
||||||
run_cmd += f' --seed={seed}'
|
|
||||||
run_cmd += f' --save_precision={save_precision}'
|
|
||||||
run_cmd += f' --logging_dir="{logging_dir}"'
|
run_cmd += f' --logging_dir="{logging_dir}"'
|
||||||
if not caption_extension == '':
|
|
||||||
run_cmd += f' --caption_extension={caption_extension}'
|
|
||||||
if not stop_text_encoder_training == 0:
|
if not stop_text_encoder_training == 0:
|
||||||
run_cmd += (
|
run_cmd += (
|
||||||
f' --stop_text_encoder_training={stop_text_encoder_training}'
|
f' --stop_text_encoder_training={stop_text_encoder_training}'
|
||||||
)
|
)
|
||||||
if not save_model_as == 'same as source model':
|
if not save_model_as == 'same as source model':
|
||||||
run_cmd += f' --save_model_as={save_model_as}'
|
run_cmd += f' --save_model_as={save_model_as}'
|
||||||
# if not resume == '':
|
|
||||||
# run_cmd += f' --resume="{resume}"'
|
|
||||||
if not float(prior_loss_weight) == 1.0:
|
if not float(prior_loss_weight) == 1.0:
|
||||||
run_cmd += f' --prior_loss_weight={prior_loss_weight}'
|
run_cmd += f' --prior_loss_weight={prior_loss_weight}'
|
||||||
run_cmd += f' --network_module=networks.lora'
|
run_cmd += f' --network_module=networks.lora'
|
||||||
@ -383,21 +373,28 @@ def train_model(
|
|||||||
run_cmd += f' --unet_lr={unet_lr}'
|
run_cmd += f' --unet_lr={unet_lr}'
|
||||||
else:
|
else:
|
||||||
run_cmd += f' --network_train_text_encoder_only'
|
run_cmd += f' --network_train_text_encoder_only'
|
||||||
# if network_train == 'Text encoder only':
|
|
||||||
# run_cmd += f' --network_train_text_encoder_only'
|
|
||||||
# elif network_train == 'Unet only':
|
|
||||||
# run_cmd += f' --network_train_unet_only'
|
|
||||||
run_cmd += f' --network_dim={network_dim}'
|
run_cmd += f' --network_dim={network_dim}'
|
||||||
if not lora_network_weights == '':
|
if not lora_network_weights == '':
|
||||||
run_cmd += f' --network_weights="{lora_network_weights}"'
|
run_cmd += f' --network_weights="{lora_network_weights}"'
|
||||||
if int(gradient_accumulation_steps) > 1:
|
if int(gradient_accumulation_steps) > 1:
|
||||||
run_cmd += f' --gradient_accumulation_steps={int(gradient_accumulation_steps)}'
|
run_cmd += f' --gradient_accumulation_steps={int(gradient_accumulation_steps)}'
|
||||||
# if not vae == '':
|
|
||||||
# run_cmd += f' --vae="{vae}"'
|
|
||||||
if not output_name == '':
|
if not output_name == '':
|
||||||
run_cmd += f' --output_name="{output_name}"'
|
run_cmd += f' --output_name="{output_name}"'
|
||||||
# if (int(max_token_length) > 75):
|
|
||||||
# run_cmd += f' --max_token_length={max_token_length}'
|
run_cmd += run_cmd_training(
|
||||||
|
learning_rate=learning_rate,
|
||||||
|
lr_scheduler=lr_scheduler,
|
||||||
|
lr_warmup_steps=lr_warmup_steps,
|
||||||
|
train_batch_size=train_batch_size,
|
||||||
|
max_train_steps=max_train_steps,
|
||||||
|
save_every_n_epochs=save_every_n_epochs,
|
||||||
|
mixed_precision=mixed_precision,
|
||||||
|
save_precision=save_precision,
|
||||||
|
seed=seed,
|
||||||
|
caption_extension=caption_extension,
|
||||||
|
cache_latents=cache_latents,
|
||||||
|
)
|
||||||
|
|
||||||
run_cmd += run_cmd_advanced_training(
|
run_cmd += run_cmd_advanced_training(
|
||||||
max_train_epochs=max_train_epochs,
|
max_train_epochs=max_train_epochs,
|
||||||
max_data_loader_n_workers=max_data_loader_n_workers,
|
max_data_loader_n_workers=max_data_loader_n_workers,
|
||||||
@ -472,88 +469,20 @@ def lora_tab(
|
|||||||
gr.Markdown(
|
gr.Markdown(
|
||||||
'Train a custom model using kohya train network LoRA python code...'
|
'Train a custom model using kohya train network LoRA python code...'
|
||||||
)
|
)
|
||||||
with gr.Accordion('Configuration file', open=False):
|
(
|
||||||
with gr.Row():
|
button_open_config,
|
||||||
button_open_config = gr.Button('Open 📂', elem_id='open_folder')
|
button_save_config,
|
||||||
button_save_config = gr.Button('Save 💾', elem_id='open_folder')
|
button_save_as_config,
|
||||||
button_save_as_config = gr.Button(
|
config_file_name,
|
||||||
'Save as... 💾', elem_id='open_folder'
|
) = gradio_config()
|
||||||
)
|
|
||||||
config_file_name = gr.Textbox(
|
|
||||||
label='',
|
|
||||||
placeholder="type the configuration file path or use the 'Open' button above to select it...",
|
|
||||||
interactive=True,
|
|
||||||
)
|
|
||||||
# config_file_name.change(
|
|
||||||
# remove_doublequote,
|
|
||||||
# inputs=[config_file_name],
|
|
||||||
# outputs=[config_file_name],
|
|
||||||
# )
|
|
||||||
with gr.Tab('Source model'):
|
|
||||||
# Define the input elements
|
|
||||||
with gr.Row():
|
|
||||||
pretrained_model_name_or_path = gr.Textbox(
|
|
||||||
label='Pretrained model name or path',
|
|
||||||
placeholder='enter the path to custom model or name of pretrained model',
|
|
||||||
)
|
|
||||||
pretrained_model_name_or_path_file = gr.Button(
|
|
||||||
document_symbol, elem_id='open_folder_small'
|
|
||||||
)
|
|
||||||
pretrained_model_name_or_path_file.click(
|
|
||||||
get_any_file_path,
|
|
||||||
inputs=[pretrained_model_name_or_path],
|
|
||||||
outputs=pretrained_model_name_or_path,
|
|
||||||
)
|
|
||||||
pretrained_model_name_or_path_folder = gr.Button(
|
|
||||||
folder_symbol, elem_id='open_folder_small'
|
|
||||||
)
|
|
||||||
pretrained_model_name_or_path_folder.click(
|
|
||||||
get_folder_path,
|
|
||||||
outputs=pretrained_model_name_or_path,
|
|
||||||
)
|
|
||||||
model_list = gr.Dropdown(
|
|
||||||
label='(Optional) Model Quick Pick',
|
|
||||||
choices=[
|
|
||||||
'custom',
|
|
||||||
'stabilityai/stable-diffusion-2-1-base',
|
|
||||||
'stabilityai/stable-diffusion-2-base',
|
|
||||||
'stabilityai/stable-diffusion-2-1',
|
|
||||||
'stabilityai/stable-diffusion-2',
|
|
||||||
'runwayml/stable-diffusion-v1-5',
|
|
||||||
'CompVis/stable-diffusion-v1-4',
|
|
||||||
],
|
|
||||||
)
|
|
||||||
save_model_as_dropdown = gr.Dropdown(
|
|
||||||
label='Save trained model as',
|
|
||||||
choices=[
|
|
||||||
'same as source model',
|
|
||||||
'ckpt',
|
|
||||||
'diffusers',
|
|
||||||
'diffusers_safetensors',
|
|
||||||
'safetensors',
|
|
||||||
],
|
|
||||||
value='same as source model',
|
|
||||||
)
|
|
||||||
|
|
||||||
with gr.Row():
|
(
|
||||||
v2 = gr.Checkbox(label='v2', value=True)
|
pretrained_model_name_or_path,
|
||||||
v_parameterization = gr.Checkbox(
|
v2,
|
||||||
label='v_parameterization', value=False
|
v_parameterization,
|
||||||
)
|
save_model_as,
|
||||||
pretrained_model_name_or_path.change(
|
model_list,
|
||||||
remove_doublequote,
|
) = gradio_source_model()
|
||||||
inputs=[pretrained_model_name_or_path],
|
|
||||||
outputs=[pretrained_model_name_or_path],
|
|
||||||
)
|
|
||||||
model_list.change(
|
|
||||||
set_pretrained_model_name_or_path_input,
|
|
||||||
inputs=[model_list, v2, v_parameterization],
|
|
||||||
outputs=[
|
|
||||||
pretrained_model_name_or_path,
|
|
||||||
v2,
|
|
||||||
v_parameterization,
|
|
||||||
],
|
|
||||||
)
|
|
||||||
|
|
||||||
with gr.Tab('Folders'):
|
with gr.Tab('Folders'):
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
@ -625,20 +554,24 @@ def lora_tab(
|
|||||||
inputs=[lora_network_weights],
|
inputs=[lora_network_weights],
|
||||||
outputs=lora_network_weights,
|
outputs=lora_network_weights,
|
||||||
)
|
)
|
||||||
with gr.Row():
|
(
|
||||||
lr_scheduler = gr.Dropdown(
|
learning_rate,
|
||||||
label='LR Scheduler',
|
lr_scheduler,
|
||||||
choices=[
|
lr_warmup,
|
||||||
'constant',
|
train_batch_size,
|
||||||
'constant_with_warmup',
|
epoch,
|
||||||
'cosine',
|
save_every_n_epochs,
|
||||||
'cosine_with_restarts',
|
mixed_precision,
|
||||||
'linear',
|
save_precision,
|
||||||
'polynomial',
|
num_cpu_threads_per_process,
|
||||||
],
|
seed,
|
||||||
value='cosine',
|
caption_extension,
|
||||||
)
|
cache_latents,
|
||||||
lr_warmup = gr.Textbox(label='LR warmup (% of steps)', value=10)
|
) = gradio_training(
|
||||||
|
learning_rate_value='1e-5',
|
||||||
|
lr_scheduler_value='cosine',
|
||||||
|
lr_warmup_value='10',
|
||||||
|
)
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
text_encoder_lr = gr.Textbox(
|
text_encoder_lr = gr.Textbox(
|
||||||
label='Text Encoder learning rate',
|
label='Text Encoder learning rate',
|
||||||
@ -659,55 +592,11 @@ def lora_tab(
|
|||||||
interactive=True,
|
interactive=True,
|
||||||
)
|
)
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
train_batch_size = gr.Slider(
|
|
||||||
minimum=1,
|
|
||||||
maximum=32,
|
|
||||||
label='Train batch size',
|
|
||||||
value=1,
|
|
||||||
step=1,
|
|
||||||
)
|
|
||||||
epoch = gr.Textbox(label='Epoch', value=1)
|
|
||||||
save_every_n_epochs = gr.Textbox(
|
|
||||||
label='Save every N epochs', value=1
|
|
||||||
)
|
|
||||||
with gr.Row():
|
|
||||||
mixed_precision = gr.Dropdown(
|
|
||||||
label='Mixed precision',
|
|
||||||
choices=[
|
|
||||||
'no',
|
|
||||||
'fp16',
|
|
||||||
'bf16',
|
|
||||||
],
|
|
||||||
value='fp16',
|
|
||||||
)
|
|
||||||
save_precision = gr.Dropdown(
|
|
||||||
label='Save precision',
|
|
||||||
choices=[
|
|
||||||
'float',
|
|
||||||
'fp16',
|
|
||||||
'bf16',
|
|
||||||
],
|
|
||||||
value='fp16',
|
|
||||||
)
|
|
||||||
num_cpu_threads_per_process = gr.Slider(
|
|
||||||
minimum=1,
|
|
||||||
maximum=os.cpu_count(),
|
|
||||||
step=1,
|
|
||||||
label='Number of CPU threads per process',
|
|
||||||
value=os.cpu_count(),
|
|
||||||
)
|
|
||||||
with gr.Row():
|
|
||||||
seed = gr.Textbox(label='Seed', value=1234)
|
|
||||||
max_resolution = gr.Textbox(
|
max_resolution = gr.Textbox(
|
||||||
label='Max resolution',
|
label='Max resolution',
|
||||||
value='512,512',
|
value='512,512',
|
||||||
placeholder='512,512',
|
placeholder='512,512',
|
||||||
)
|
)
|
||||||
with gr.Row():
|
|
||||||
caption_extention = gr.Textbox(
|
|
||||||
label='Caption Extension',
|
|
||||||
placeholder='(Optional) Extension for caption files. default: .caption',
|
|
||||||
)
|
|
||||||
stop_text_encoder_training = gr.Slider(
|
stop_text_encoder_training = gr.Slider(
|
||||||
minimum=0,
|
minimum=0,
|
||||||
maximum=100,
|
maximum=100,
|
||||||
@ -715,9 +604,7 @@ def lora_tab(
|
|||||||
step=1,
|
step=1,
|
||||||
label='Stop text encoder training',
|
label='Stop text encoder training',
|
||||||
)
|
)
|
||||||
with gr.Row():
|
|
||||||
enable_bucket = gr.Checkbox(label='Enable buckets', value=True)
|
enable_bucket = gr.Checkbox(label='Enable buckets', value=True)
|
||||||
cache_latent = gr.Checkbox(label='Cache latent', value=True)
|
|
||||||
with gr.Accordion('Advanced Configuration', open=False):
|
with gr.Accordion('Advanced Configuration', open=False):
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
no_token_padding = gr.Checkbox(
|
no_token_padding = gr.Checkbox(
|
||||||
@ -749,7 +636,7 @@ def lora_tab(
|
|||||||
color_aug.change(
|
color_aug.change(
|
||||||
color_aug_changed,
|
color_aug_changed,
|
||||||
inputs=[color_aug],
|
inputs=[color_aug],
|
||||||
outputs=[cache_latent],
|
outputs=[cache_latents],
|
||||||
)
|
)
|
||||||
|
|
||||||
with gr.Tab('Tools'):
|
with gr.Tab('Tools'):
|
||||||
@ -776,6 +663,7 @@ def lora_tab(
|
|||||||
reg_data_dir,
|
reg_data_dir,
|
||||||
output_dir,
|
output_dir,
|
||||||
max_resolution,
|
max_resolution,
|
||||||
|
learning_rate,
|
||||||
lr_scheduler,
|
lr_scheduler,
|
||||||
lr_warmup,
|
lr_warmup,
|
||||||
train_batch_size,
|
train_batch_size,
|
||||||
@ -785,8 +673,8 @@ def lora_tab(
|
|||||||
save_precision,
|
save_precision,
|
||||||
seed,
|
seed,
|
||||||
num_cpu_threads_per_process,
|
num_cpu_threads_per_process,
|
||||||
cache_latent,
|
cache_latents,
|
||||||
caption_extention,
|
caption_extension,
|
||||||
enable_bucket,
|
enable_bucket,
|
||||||
gradient_checkpointing,
|
gradient_checkpointing,
|
||||||
full_fp16,
|
full_fp16,
|
||||||
@ -794,7 +682,7 @@ def lora_tab(
|
|||||||
stop_text_encoder_training,
|
stop_text_encoder_training,
|
||||||
use_8bit_adam,
|
use_8bit_adam,
|
||||||
xformers,
|
xformers,
|
||||||
save_model_as_dropdown,
|
save_model_as,
|
||||||
shuffle_caption,
|
shuffle_caption,
|
||||||
save_state,
|
save_state,
|
||||||
resume,
|
resume,
|
||||||
|
Loading…
Reference in New Issue
Block a user