Update to v17

New GUI
This commit is contained in:
bmaltais 2022-12-13 13:49:14 -05:00
parent 01eb9486d3
commit 5f1a465a45
6 changed files with 125 additions and 90 deletions

View File

@ -92,7 +92,15 @@ my_asd_dog_dreambooth
`- dog8.png
```
## Execution
## GUI
There is now support for GUI based training using gradio. You can start the GUI interface by running:
```powershell
python .\dreambooth_gui.py
```
## Manual Script Execution
### SD1.5 example
@ -276,22 +284,21 @@ Refer to this url for more details about finetuning: https://note.com/kohya_ss/n
## Options list
```txt
usage: train_db_fixed.py [-h] [--v2] [--v_parameterization]
[--pretrained_model_name_or_path PRETRAINED_MODEL_NAME_OR_PATH] [--fine_tuning]
[--shuffle_caption] [--caption_extention CAPTION_EXTENTION]
usage: train_db_fixed.py [-h] [--v2] [--v_parameterization] [--pretrained_model_name_or_path PRETRAINED_MODEL_NAME_OR_PATH]
[--fine_tuning] [--shuffle_caption] [--caption_extention CAPTION_EXTENTION]
[--caption_extension CAPTION_EXTENSION] [--train_data_dir TRAIN_DATA_DIR]
[--reg_data_dir REG_DATA_DIR] [--dataset_repeats DATASET_REPEATS] [--output_dir OUTPUT_DIR]
[--use_safetensors] [--save_every_n_epochs SAVE_EVERY_N_EPOCHS] [--save_state] [--resume RESUME]
[--prior_loss_weight PRIOR_LOSS_WEIGHT] [--no_token_padding]
[--stop_text_encoder_training STOP_TEXT_ENCODER_TRAINING] [--color_aug] [--flip_aug]
[--face_crop_aug_range FACE_CROP_AUG_RANGE] [--random_crop] [--debug_dataset]
[--resolution RESOLUTION] [--train_batch_size TRAIN_BATCH_SIZE] [--use_8bit_adam]
[--mem_eff_attn] [--xformers] [--vae VAE] [--cache_latents] [--enable_bucket]
[--min_bucket_reso MIN_BUCKET_RESO] [--max_bucket_reso MAX_BUCKET_RESO]
[--learning_rate LEARNING_RATE] [--max_train_steps MAX_TRAIN_STEPS] [--seed SEED]
[--gradient_checkpointing] [--mixed_precision {no,fp16,bf16}]
[--save_precision {None,float,fp16,bf16}] [--clip_skip CLIP_SKIP] [--logging_dir LOGGING_DIR]
[--log_prefix LOG_PREFIX] [--lr_scheduler LR_SCHEDULER] [--lr_warmup_steps LR_WARMUP_STEPS]
[--resolution RESOLUTION] [--train_batch_size TRAIN_BATCH_SIZE] [--use_8bit_adam] [--mem_eff_attn]
[--xformers] [--vae VAE] [--cache_latents] [--enable_bucket] [--min_bucket_reso MIN_BUCKET_RESO]
[--max_bucket_reso MAX_BUCKET_RESO] [--learning_rate LEARNING_RATE]
[--max_train_steps MAX_TRAIN_STEPS] [--seed SEED] [--gradient_checkpointing]
[--mixed_precision {no,fp16,bf16}] [--full_fp16] [--save_precision {None,float,fp16,bf16}]
[--clip_skip CLIP_SKIP] [--logging_dir LOGGING_DIR] [--log_prefix LOG_PREFIX]
[--lr_scheduler LR_SCHEDULER] [--lr_warmup_steps LR_WARMUP_STEPS]
options:
-h, --help show this help message and exit
@ -303,7 +310,7 @@ options:
--fine_tuning fine tune the model instead of DreamBooth / DreamBoothではなくfine tuningする
--shuffle_caption shuffle comma-separated caption / コンマで区切られたcaptionの各要素をshuffleする
--caption_extention CAPTION_EXTENTION
extension of caption files (backward compatiblity) / 読み込むcaptionファイルの拡張子スペルミスを 残してあります)
extension of caption files (backward compatiblity) / 読み込むcaptionファイルの拡張子スペルミスを残してあります
--caption_extension CAPTION_EXTENSION
extension of caption files / 読み込むcaptionファイルの拡張子
--train_data_dir TRAIN_DATA_DIR
@ -314,10 +321,9 @@ options:
repeat dataset in fine tuning / fine tuning時にデータセットを繰り返す回数
--output_dir OUTPUT_DIR
directory to output trained model / 学習後のモデル出力先ディレクトリ
--use_safetensors use safetensors format for StableDiffusion checkpoint /
StableDiffusionのcheckpointをsafetensors形式で保存する
--use_safetensors use safetensors format to save / checkpoint、モデルをsafetensors形式で保存する
--save_every_n_epochs SAVE_EVERY_N_EPOCHS
save checkpoint every N epochs / 学習中のモデルを指定エポックごとに保存しま
save checkpoint every N epochs / 学習中のモデルを指定エポックごとに保存す
--save_state save training state additionally (including optimizer states etc.) /
optimizerなど学習状態も含めたstateを追加で保存する
--resume RESUME saved state to resume training / 学習再開するモデルのstate
@ -336,11 +342,11 @@ options:
ランダムな切り出しを有効にする顔を中心としたaugmentationを行うときに画風の学習用に指定する
--debug_dataset show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)
--resolution RESOLUTION
resolution in training ('size' or 'width,height') / 学習時の画像解像度('サイズ'指定、または'幅,高 さ'指定)
resolution in training ('size' or 'width,height') / 学習時の画像解像度('サイズ'指定、または'幅,高さ' 指定)
--train_batch_size TRAIN_BATCH_SIZE
batch size for training (1 means one train or reg data, not train/reg pair) /
学習時のバッチサイズ1でtrain/regをそれぞれ1件ずつ学習
--use_8bit_adam use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使うbitsandbytesのインストールが必要
--use_8bit_adam use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使うbitsandbytesのインス トールが必要)
--mem_eff_attn use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う
--xformers use xformers for CrossAttention / CrossAttentionにxformersを使う
--vae VAE path to checkpoint of vae to replace / VAEを入れ替える場合、VAEのcheckpointファイルまたはディレクトリ
@ -360,19 +366,20 @@ options:
enable gradient checkpointing / grandient checkpointingを有効にする
--mixed_precision {no,fp16,bf16}
use mixed precision / 混合精度を使う場合、その精度
--full_fp16 fp16 training including gradients / 勾配も含めてfp16で学習する
--save_precision {None,float,fp16,bf16}
precision in saving (available in StableDiffusion checkpoint) /
保存時に精度を変更して保存するStableDiffusion形式での保存時のみ有効
--clip_skip CLIP_SKIP
use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を 用いるnは1以上
use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いるnは1以上
--logging_dir LOGGING_DIR
enable logging and output TensorBoard log to this directory /
ログ出力を有効にしてこのディレクトリにTensorBoard用のログを出力する
--log_prefix LOG_PREFIX
add prefix for each log directory / ログディレクトリ名の先頭に追加する文字列
--lr_scheduler LR_SCHEDULER
scheduler to use for learning rate / 学習率のスケジューラ: linear, cosine, cosine_with_restarts,
polynomial, constant (default), constant_with_warmup
scheduler to use for learning rate / 学習率のスケジューラ: linear, cosine, cosine_with_restarts, polynomial,
constant (default), constant_with_warmup
--lr_warmup_steps LR_WARMUP_STEPS
Number of steps for the warmup in the lr scheduler (default is 0) /
学習率のスケジューラをウォームアップするステップ数デフォルト0

View File

@ -34,7 +34,9 @@ def save_variables(
cache_latent,
caption_extention,
use_safetensors,
enable_bucket
enable_bucket,
gradient_checkpointing,
full_fp16
):
# Return the values of the variables as a dictionary
variables = {
@ -61,7 +63,9 @@ def save_variables(
"cache_latent": cache_latent,
"caption_extention": caption_extention,
"use_safetensors": use_safetensors,
"enable_bucket": enable_bucket
"enable_bucket": enable_bucket,
"gradient_checkpointing": gradient_checkpointing,
"full_fp16": full_fp16
}
# Save the data to the selected file
@ -100,6 +104,8 @@ def load_variables(file_path):
my_data.get("caption_extention", None),
my_data.get("use_safetensors", None),
my_data.get("enable_bucket", None),
my_data.get("gradient_checkpointing", None),
my_data.get("full_fp16", None),
)
@ -127,7 +133,9 @@ def train_model(
cache_latent,
caption_extention,
use_safetensors,
enable_bucket
enable_bucket,
gradient_checkpointing,
full_fp16
):
def save_inference_file(output_dir, v2, v_model):
# Copy inference model for v2 if required
@ -189,6 +197,10 @@ def train_model(
run_cmd += " --use_safetensors"
if enable_bucket:
run_cmd += " --enable_bucket"
if gradient_checkpointing:
run_cmd += " --gradient_checkpointing"
if full_fp16:
run_cmd += " --full_fp16"
run_cmd += f" --pretrained_model_name_or_path={pretrained_model_name_or_path}"
run_cmd += f" --train_data_dir={train_data_dir}"
run_cmd += f" --reg_data_dir={reg_data_dir}"
@ -287,8 +299,8 @@ with interface:
with gr.Row():
config_file_name = gr.Textbox(
label="Config file name")
b1 = gr.Button("Load config")
b2 = gr.Button("Save config")
button_load_config = gr.Button("Load config")
button_save_config = gr.Button("Save config")
with gr.Tab("Source model"):
# Define the input elements
with gr.Row():
@ -399,6 +411,12 @@ with interface:
cache_latent_input = gr.Checkbox(
label="Cache latent", value=True
)
gradient_checkpointing_input = gr.Checkbox(
label="Gradient checkpointing", value=False
)
full_fp16_input = gr.Checkbox(
label="Full fp16 training (experimental)", value=False
)
with gr.Tab("Model conversion"):
convert_to_safetensors_input = gr.Checkbox(
@ -408,9 +426,9 @@ with interface:
label="Convert to CKPT", value=False
)
b3 = gr.Button("Run")
button_run = gr.Button("Run")
b1.click(
button_load_config.click(
load_variables,
inputs=[config_file_name],
outputs=[
@ -437,11 +455,13 @@ with interface:
cache_latent_input,
caption_extention_input,
use_safetensors_input,
enable_bucket_input
enable_bucket_input,
gradient_checkpointing_input,
full_fp16_input
]
)
b2.click(
button_save_config.click(
save_variables,
inputs=[
config_file_name,
@ -468,10 +488,12 @@ with interface:
cache_latent_input,
caption_extention_input,
use_safetensors_input,
enable_bucket_input
enable_bucket_input,
gradient_checkpointing_input,
full_fp16_input
]
)
b3.click(
button_run.click(
train_model,
inputs=[
pretrained_model_name_or_path_input,
@ -497,7 +519,9 @@ with interface:
cache_latent_input,
caption_extention_input,
use_safetensors_input,
enable_bucket_input
enable_bucket_input,
gradient_checkpointing_input,
full_fp16_input
]
)

View File

@ -813,7 +813,7 @@ def convert_vae_state_dict(vae_state_dict):
# endregion
# region 自作のモデル読み書き
# region 自作のモデル読み書きなど
def is_safetensors(path):
return os.path.splitext(path)[1].lower() == '.safetensors'
@ -1046,7 +1046,7 @@ def save_stable_diffusion_checkpoint(v2, output_file, text_encoder, unet, ckpt_p
return key_count
def save_diffusers_checkpoint(v2, output_dir, text_encoder, unet, pretrained_model_name_or_path, vae=None):
def save_diffusers_checkpoint(v2, output_dir, text_encoder, unet, pretrained_model_name_or_path, vae=None, use_safetensors=False):
if vae is None:
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
pipeline = StableDiffusionPipeline(
@ -1059,7 +1059,7 @@ def save_diffusers_checkpoint(v2, output_dir, text_encoder, unet, pretrained_mod
feature_extractor=None,
requires_safety_checker=None,
)
pipeline.save_pretrained(output_dir)
pipeline.save_pretrained(output_dir, safe_serialization=use_safetensors)
VAE_PREFIX = "first_stage_model."
@ -1117,6 +1117,7 @@ def get_epoch_ckpt_name(use_safetensors, epoch):
def get_last_ckpt_name(use_safetensors):
return f"last" + (".safetensors" if use_safetensors else ".ckpt")
# endregion

View File

@ -1,13 +1,13 @@
accelerate==0.14.0
accelerate==0.15.0
transformers==4.25.1
ftfy
albumentations
opencv-python
einops
diffusers[torch]==0.9.0
diffusers[torch]==0.10.2
pytorch_lightning
bitsandbytes==0.35.0
tensorboard
safetensors==0.2.5
safetensors==0.2.6
gradio
altair

View File

@ -1,4 +1,3 @@
import os
import argparse
import torch
from tqdm import tqdm
@ -23,7 +22,7 @@ del theta_prune
if args.half:
print("Halving model...")
state_dict = {k: v.half() for k, v in theta.items()}
state_dict = {k: v.half() for k, v in tqdm(theta.items(), desc="Halving weights")}
else:
state_dict = theta

View File

@ -13,6 +13,9 @@
# v12: stop train text encode, tqdm smoothing
# v13: bug fix
# v14: refactor to use model_util, add log prefix, support safetensors, support vae loading, keep vae in CPU to save the loaded vae
# v15: model_util update
# v16: support Diffusers 0.10.0 (v-parameterization training, safetensors in Diffusers) and accelerate 0.15.0
# v17: add fp16 gradient training (experimental)
import gc
import time
@ -43,7 +46,7 @@ import model_util
# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
V2_STABLE_DIFFUSION_PATH = "stabilityai/stable-diffusion-2" # ここからtokenizerだけ使う
V2_STABLE_DIFFUSION_PATH = "stabilityai/stable-diffusion-2" # ここからtokenizerだけ使う v2とv2.1はtokenizer仕様は同じ
# CLIP_ID_L14_336 = "openai/clip-vit-large-patch14-336"
@ -596,10 +599,6 @@ def replace_unet_cross_attn_to_memory_efficient():
out = rearrange(out, 'b h n d -> b n (h d)')
# diffusers 0.6.0
if type(self.to_out) is torch.nn.Sequential:
return self.to_out(out)
# diffusers 0.7.0~
out = self.to_out[0](out)
out = self.to_out[1](out)
@ -633,10 +632,6 @@ def replace_unet_cross_attn_to_xformers():
out = rearrange(out, 'b n h d -> b n (h d)', h=h)
# out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
# diffusers 0.6.0
if type(self.to_out) is torch.nn.Sequential:
return self.to_out(out)
# diffusers 0.7.0~
out = self.to_out[0](out)
out = self.to_out[1](out)
@ -821,6 +816,19 @@ def train(args):
accelerator = Accelerator(gradient_accumulation_steps=1, mixed_precision=args.mixed_precision,
log_with=log_with, logging_dir=logging_dir)
# accelerateの互換性問題を解決する
accelerator_0_15 = True
try:
accelerator.unwrap_model("dummy", True)
print("Using accelerator 0.15.0 or above.")
except TypeError:
accelerator_0_15 = False
def unwrap_model(model):
if accelerator_0_15:
return accelerator.unwrap_model(model, True)
return accelerator.unwrap_model(model)
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
@ -914,6 +922,13 @@ def train(args):
lr_scheduler = diffusers.optimization.get_scheduler(
args.lr_scheduler, optimizer, num_warmup_steps=args.lr_warmup_steps, num_training_steps=args.max_train_steps)
# 実験的機能勾配も含めたfp16学習を行う モデル全体をfp16にする
if args.full_fp16:
assert args.mixed_precision == "fp16", "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
print("enable full fp16 training.")
unet.to(weight_dtype)
text_encoder.to(weight_dtype)
# acceleratorがなんかよろしくやってくれるらしい
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, text_encoder, optimizer, train_dataloader, lr_scheduler)
@ -921,6 +936,15 @@ def train(args):
if not cache_latents:
vae.to(accelerator.device, dtype=weight_dtype)
# 実験的機能勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
if args.full_fp16:
org_unscale_grads = accelerator.scaler._unscale_grads_
def _unscale_grads_replacer(optimizer, inv_scale, found_inf, allow_fp16):
return org_unscale_grads(optimizer, inv_scale, found_inf, True)
accelerator.scaler._unscale_grads_ = _unscale_grads_replacer
# resumeする
if args.resume is not None:
print(f"resume training from state: {args.resume}")
@ -946,8 +970,8 @@ def train(args):
# v12で更新clip_sample=Falseに
# Diffusersのtrain_dreambooth.pyがconfigから持ってくるように変更されたので、clip_sample=Falseになるため、それに合わせる
# 既存の1.4/1.5/2.0はすべてschdulerのconfigはクラス名を除いて同じ
# よくソースを見たら学習時は関係ないや(;'∀') 
# 既存の1.4/1.5/2.0/2.1はすべてschdulerのconfigはクラス名を除いて同じ
# よくソースを見たら学習時はclip_sampleは関係ないや(;'∀') 
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
num_train_timesteps=1000, clip_sample=False)
@ -1006,31 +1030,8 @@ def train(args):
if args.v_parameterization:
# v-parameterization training
# こうしたい:
# target = noise_scheduler.get_v(latents, noise, timesteps)
# StabilityAiのddpm.pyのコード
# elif self.parameterization == "v":
# target = self.get_v(x_start, noise, t)
# ...
# def get_v(self, x, noise, t):
# return (
# extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
# extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
# )
# scheduling_ddim.pyのコード
# elif self.config.prediction_type == "v_prediction":
# pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
# # predict V
# model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
# これでいいかな?:
alpha_prod_t = noise_scheduler.alphas_cumprod[timesteps]
beta_prod_t = 1 - alpha_prod_t
alpha_prod_t = torch.reshape(alpha_prod_t, (len(alpha_prod_t), 1, 1, 1)) # broadcastされないらしいのでreshape
beta_prod_t = torch.reshape(beta_prod_t, (len(beta_prod_t), 1, 1, 1))
target = (alpha_prod_t ** 0.5) * noise - (beta_prod_t ** 0.5) * latents
# Diffusers 0.10.0からv_parameterizationの学習に対応したのでそちらを使う
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
target = noise
@ -1081,13 +1082,14 @@ def train(args):
if use_stable_diffusion_format:
os.makedirs(args.output_dir, exist_ok=True)
ckpt_file = os.path.join(args.output_dir, model_util.get_epoch_ckpt_name(args.use_safetensors, epoch + 1))
model_util.save_stable_diffusion_checkpoint(args.v2, ckpt_file, accelerator.unwrap_model(text_encoder), accelerator.unwrap_model(unet),
model_util.save_stable_diffusion_checkpoint(args.v2, ckpt_file, unwrap_model(text_encoder), unwrap_model(unet),
args.pretrained_model_name_or_path, epoch + 1, global_step, save_dtype, vae)
else:
out_dir = os.path.join(args.output_dir, EPOCH_DIFFUSERS_DIR_NAME.format(epoch + 1))
os.makedirs(out_dir, exist_ok=True)
model_util.save_diffusers_checkpoint(args.v2, out_dir, accelerator.unwrap_model(text_encoder),
accelerator.unwrap_model(unet), args.pretrained_model_name_or_path)
model_util.save_diffusers_checkpoint(args.v2, out_dir, unwrap_model(text_encoder),
unwrap_model(unet), args.pretrained_model_name_or_path,
use_safetensors=args.use_safetensors)
if args.save_state:
print("saving state.")
@ -1095,8 +1097,8 @@ def train(args):
is_main_process = accelerator.is_main_process
if is_main_process:
unet = accelerator.unwrap_model(unet)
text_encoder = accelerator.unwrap_model(text_encoder)
unet = unwrap_model(unet)
text_encoder = unwrap_model(text_encoder)
accelerator.end_training()
@ -1118,7 +1120,8 @@ def train(args):
print(f"save trained model as Diffusers to {args.output_dir}")
out_dir = os.path.join(args.output_dir, LAST_DIFFUSERS_DIR_NAME)
os.makedirs(out_dir, exist_ok=True)
model_util.save_diffusers_checkpoint(args.v2, out_dir, text_encoder, unet, args.pretrained_model_name_or_path)
model_util.save_diffusers_checkpoint(args.v2, out_dir, text_encoder, unet, args.pretrained_model_name_or_path,
use_safetensors=args.use_safetensors)
print("model saved.")
@ -1147,9 +1150,9 @@ if __name__ == '__main__':
parser.add_argument("--output_dir", type=str, default=None,
help="directory to output trained model / 学習後のモデル出力先ディレクトリ")
parser.add_argument("--use_safetensors", action='store_true',
help="use safetensors format for StableDiffusion checkpoint / StableDiffusionのcheckpointをsafetensors形式で保存する")
help="use safetensors format to save / checkpoint、モデルをsafetensors形式で保存する")
parser.add_argument("--save_every_n_epochs", type=int, default=None,
help="save checkpoint every N epochs / 学習中のモデルを指定エポックごとに保存しま")
help="save checkpoint every N epochs / 学習中のモデルを指定エポックごとに保存")
parser.add_argument("--save_state", action="store_true",
help="save training state additionally (including optimizer states etc.) / optimizerなど学習状態も含めたstateを追加で保存する")
parser.add_argument("--resume", type=str, default=None, help="saved state to resume training / 学習再開するモデルのstate")
@ -1191,6 +1194,7 @@ if __name__ == '__main__':
help="enable gradient checkpointing / grandient checkpointingを有効にする")
parser.add_argument("--mixed_precision", type=str, default="no",
choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度")
parser.add_argument("--full_fp16", action="store_true", help="fp16 training including gradients / 勾配も含めてfp16で学習する")
parser.add_argument("--save_precision", type=str, default=None,
choices=[None, "float", "fp16", "bf16"], help="precision in saving (available in StableDiffusion checkpoint) / 保存時に精度を変更して保存するStableDiffusion形式での保存時のみ有効")
parser.add_argument("--clip_skip", type=int, default=None,