commit
76acf2a200
@ -355,6 +355,7 @@ def gradio_source_model():
|
||||
pretrained_model_name_or_path = gr.Textbox(
|
||||
label='Pretrained model name or path',
|
||||
placeholder='enter the path to custom model or name of pretrained model',
|
||||
value='runwayml/stable-diffusion-v1-5'
|
||||
)
|
||||
pretrained_model_name_or_path_file = gr.Button(
|
||||
document_symbol, elem_id='open_folder_small'
|
||||
@ -373,7 +374,7 @@ def gradio_source_model():
|
||||
outputs=pretrained_model_name_or_path,
|
||||
)
|
||||
model_list = gr.Dropdown(
|
||||
label='(Optional) Model Quick Pick',
|
||||
label='Model Quick Pick',
|
||||
choices=[
|
||||
'custom',
|
||||
'stabilityai/stable-diffusion-2-1-base',
|
||||
@ -383,6 +384,7 @@ def gradio_source_model():
|
||||
'runwayml/stable-diffusion-v1-5',
|
||||
'CompVis/stable-diffusion-v1-4',
|
||||
],
|
||||
value='runwayml/stable-diffusion-v1-5'
|
||||
)
|
||||
save_model_as = gr.Dropdown(
|
||||
label='Save trained model as',
|
||||
@ -397,7 +399,7 @@ def gradio_source_model():
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
v2 = gr.Checkbox(label='v2', value=True)
|
||||
v2 = gr.Checkbox(label='v2', value=False)
|
||||
v_parameterization = gr.Checkbox(
|
||||
label='v_parameterization', value=False
|
||||
)
|
||||
|
70
lora_gui.py
70
lora_gui.py
@ -123,7 +123,7 @@ def save_configuration(
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,noise_offset,
|
||||
locon=0, conv_dim=0, conv_alpha=0,
|
||||
LoRA_type='Standard', conv_dim=0, conv_alpha=0,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -231,7 +231,7 @@ def open_configuration(
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,noise_offset,
|
||||
locon=0, conv_dim=0, conv_alpha=0,
|
||||
LoRA_type='Standard', conv_dim=0, conv_alpha=0,
|
||||
):
|
||||
# Get list of function parameters and values
|
||||
parameters = list(locals().items())
|
||||
@ -256,6 +256,12 @@ def open_configuration(
|
||||
if not key in ['file_path']:
|
||||
values.append(my_data.get(key, value))
|
||||
|
||||
# This next section is about making the LoCon parameters visible if LoRA_type = 'Standard'
|
||||
if my_data.get('LoRA_type', 'Standard') == 'LoCon':
|
||||
values.append(gr.Group.update(visible=True))
|
||||
else:
|
||||
values.append(gr.Group.update(visible=False))
|
||||
|
||||
return tuple(values)
|
||||
|
||||
|
||||
@ -319,7 +325,7 @@ def train_model(
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,noise_offset,
|
||||
locon, conv_dim, conv_alpha,
|
||||
LoRA_type, conv_dim, conv_alpha,
|
||||
):
|
||||
if pretrained_model_name_or_path == '':
|
||||
msgbox('Source model information is missing')
|
||||
@ -455,7 +461,7 @@ def train_model(
|
||||
run_cmd += f' --save_model_as={save_model_as}'
|
||||
if not float(prior_loss_weight) == 1.0:
|
||||
run_cmd += f' --prior_loss_weight={prior_loss_weight}'
|
||||
if locon:
|
||||
if LoRA_type == 'LoCon':
|
||||
getlocon(os.path.exists(os.path.join(path_of_this_folder, 'locon')))
|
||||
run_cmd += f' --network_module=locon.locon.locon_kohya'
|
||||
run_cmd += f' --network_args "conv_dim={conv_dim}" "conv_alpha={conv_alpha}"'
|
||||
@ -634,6 +640,14 @@ def lora_tab(
|
||||
)
|
||||
with gr.Tab('Training parameters'):
|
||||
with gr.Row():
|
||||
LoRA_type = gr.Dropdown(
|
||||
label='LoRA type',
|
||||
choices=[
|
||||
'Standard',
|
||||
'LoCon',
|
||||
],
|
||||
value='Standard'
|
||||
)
|
||||
lora_network_weights = gr.Textbox(
|
||||
label='LoRA network weights',
|
||||
placeholder='{Optional) Path to existing LoRA network weights to resume training',
|
||||
@ -666,6 +680,7 @@ def lora_tab(
|
||||
lr_scheduler_value='cosine',
|
||||
lr_warmup_value='10',
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
text_encoder_lr = gr.Textbox(
|
||||
label='Text Encoder learning rate',
|
||||
@ -693,6 +708,33 @@ def lora_tab(
|
||||
step=1,
|
||||
interactive=True,
|
||||
)
|
||||
|
||||
with gr.Group(visible=False) as LoCon_group:
|
||||
def LoRA_type_change(LoRA_type):
|
||||
if LoRA_type == "LoCon":
|
||||
return gr.Group.update(visible=True)
|
||||
else:
|
||||
return gr.Group.update(visible=False)
|
||||
|
||||
with gr.Row():
|
||||
|
||||
# locon= gr.Checkbox(label='Train a LoCon instead of a general LoRA (does not support v2 base models) (may not be able to some utilities now)', value=False)
|
||||
conv_dim = gr.Slider(
|
||||
minimum=1,
|
||||
maximum=512,
|
||||
value=1,
|
||||
step=1,
|
||||
label='LoCon Convolution Rank (Dimension)',
|
||||
)
|
||||
conv_alpha = gr.Slider(
|
||||
minimum=1,
|
||||
maximum=512,
|
||||
value=1,
|
||||
step=1,
|
||||
label='LoCon Convolution Alpha',
|
||||
)
|
||||
# Show of hide LoCon conv settings depending on LoRA type selection
|
||||
LoRA_type.change(LoRA_type_change, inputs=[LoRA_type], outputs=[LoCon_group])
|
||||
with gr.Row():
|
||||
max_resolution = gr.Textbox(
|
||||
label='Max resolution',
|
||||
@ -708,22 +750,6 @@ def lora_tab(
|
||||
)
|
||||
enable_bucket = gr.Checkbox(label='Enable buckets', value=True)
|
||||
with gr.Accordion('Advanced Configuration', open=False):
|
||||
with gr.Row():
|
||||
locon= gr.Checkbox(label='Train a LoCon instead of a general LoRA (does not support v2 base models) (may not be able to some utilities now)', value=False)
|
||||
conv_dim = gr.Slider(
|
||||
minimum=1,
|
||||
maximum=512,
|
||||
value=1,
|
||||
step=1,
|
||||
label='LoCon Convolution Rank (Dimension)',
|
||||
)
|
||||
conv_alpha = gr.Slider(
|
||||
minimum=1,
|
||||
maximum=512,
|
||||
value=1,
|
||||
step=1,
|
||||
label='LoCon Convolution Alpha',
|
||||
)
|
||||
with gr.Row():
|
||||
no_token_padding = gr.Checkbox(
|
||||
label='No token padding', value=False
|
||||
@ -869,13 +895,13 @@ def lora_tab(
|
||||
caption_dropout_rate,
|
||||
optimizer,
|
||||
optimizer_args,noise_offset,
|
||||
locon, conv_dim, conv_alpha,
|
||||
LoRA_type, conv_dim, conv_alpha,
|
||||
]
|
||||
|
||||
button_open_config.click(
|
||||
open_configuration,
|
||||
inputs=[config_file_name] + settings_list,
|
||||
outputs=[config_file_name] + settings_list,
|
||||
outputs=[config_file_name] + settings_list + [LoCon_group],
|
||||
)
|
||||
|
||||
button_save_config.click(
|
||||
|
@ -1,28 +1,28 @@
|
||||
accelerate==0.15.0
|
||||
transformers==4.26.0
|
||||
ftfy==6.1.1
|
||||
albumentations==1.3.0
|
||||
opencv-python==4.7.0.68
|
||||
einops==0.6.0
|
||||
diffusers[torch]==0.10.2
|
||||
pytorch-lightning==1.9.0
|
||||
bitsandbytes==0.35.0
|
||||
tensorboard==2.10.1
|
||||
safetensors==0.2.6
|
||||
gradio==3.16.2
|
||||
altair==4.2.2
|
||||
easygui==0.98.3
|
||||
tk==0.1.0
|
||||
lion-pytorch==0.0.6
|
||||
bitsandbytes==0.35.0
|
||||
dadaptation==1.5
|
||||
diffusers[torch]==0.10.2
|
||||
easygui==0.98.3
|
||||
einops==0.6.0
|
||||
ftfy==6.1.1
|
||||
gradio==3.19.1
|
||||
lion-pytorch==0.0.6
|
||||
opencv-python==4.7.0.68
|
||||
pytorch-lightning==1.9.0
|
||||
safetensors==0.2.6
|
||||
tensorboard==2.10.1
|
||||
tk==0.1.0
|
||||
transformers==4.26.0
|
||||
# for BLIP captioning
|
||||
fairscale==0.4.13
|
||||
requests==2.28.2
|
||||
timm==0.6.12
|
||||
fairscale==0.4.13
|
||||
# for WD14 captioning
|
||||
# tensorflow<2.11
|
||||
tensorflow==2.10.1
|
||||
huggingface-hub==0.12.0
|
||||
tensorflow==2.10.1
|
||||
# xformers @ https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl
|
||||
# for kohya_ss library
|
||||
.
|
Loading…
Reference in New Issue
Block a user