Merge pull request #26 from bmaltais/dev

- Add support for `--clip_skip` option
This commit is contained in:
bmaltais 2023-01-05 19:16:52 -05:00 committed by GitHub
commit 7e6677b5f6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 329 additions and 194 deletions

View File

@ -30,6 +30,10 @@ Once you have created the LoRA network you can generate images via auto1111 by i
## Change history ## Change history
* 2023/01/05 (v19.2):
- Add support for `--clip_skip` option
- Add missing `detect_face_rotate.py` to tools folder
- Add `gui.cmd` for easy start of GUI
* 2023/01/02 (v19.2) update: * 2023/01/02 (v19.2) update:
- Finetune, add xformers, 8bit adam, min bucket, max bucket, batch size and flip augmentation support for dataset preparation - Finetune, add xformers, 8bit adam, min bucket, max bucket, batch size and flip augmentation support for dataset preparation
- Finetune, add "Dataset preparation" tab to group task specific options - Finetune, add "Dataset preparation" tab to group task specific options

View File

@ -69,6 +69,7 @@ def save_configuration(
prior_loss_weight, prior_loss_weight,
color_aug, color_aug,
flip_aug, flip_aug,
clip_skip,
): ):
original_file_path = file_path original_file_path = file_path
@ -123,6 +124,7 @@ def save_configuration(
'prior_loss_weight': prior_loss_weight, 'prior_loss_weight': prior_loss_weight,
'color_aug': color_aug, 'color_aug': color_aug,
'flip_aug': flip_aug, 'flip_aug': flip_aug,
'clip_skip': clip_skip,
} }
# Save the data to the selected file # Save the data to the selected file
@ -168,6 +170,7 @@ def open_configuration(
prior_loss_weight, prior_loss_weight,
color_aug, color_aug,
flip_aug, flip_aug,
clip_skip,
): ):
original_file_path = file_path original_file_path = file_path
@ -223,6 +226,7 @@ def open_configuration(
my_data.get('prior_loss_weight', prior_loss_weight), my_data.get('prior_loss_weight', prior_loss_weight),
my_data.get('color_aug', color_aug), my_data.get('color_aug', color_aug),
my_data.get('flip_aug', flip_aug), my_data.get('flip_aug', flip_aug),
my_data.get('clip_skip', clip_skip),
) )
@ -261,6 +265,7 @@ def train_model(
prior_loss_weight, prior_loss_weight,
color_aug, color_aug,
flip_aug, flip_aug,
clip_skip,
): ):
def save_inference_file(output_dir, v2, v_parameterization): def save_inference_file(output_dir, v2, v_parameterization):
# Copy inference model for v2 if required # Copy inference model for v2 if required
@ -424,6 +429,8 @@ def train_model(
run_cmd += f' --resume={resume}' run_cmd += f' --resume={resume}'
if not float(prior_loss_weight) == 1.0: if not float(prior_loss_weight) == 1.0:
run_cmd += f' --prior_loss_weight={prior_loss_weight}' run_cmd += f' --prior_loss_weight={prior_loss_weight}'
if clip_skip > 1:
run_cmd += f' --clip_skip={int(clip_skip)}'
print(run_cmd) print(run_cmd)
# Run the command # Run the command
@ -774,6 +781,7 @@ def dreambooth_tab(
shuffle_caption = gr.Checkbox( shuffle_caption = gr.Checkbox(
label='Shuffle caption', value=False label='Shuffle caption', value=False
) )
with gr.Row():
save_state = gr.Checkbox( save_state = gr.Checkbox(
label='Save training state', value=False label='Save training state', value=False
) )
@ -786,6 +794,9 @@ def dreambooth_tab(
inputs=[color_aug], inputs=[color_aug],
outputs=[cache_latent_input], outputs=[cache_latent_input],
) )
clip_skip = gr.Slider(
label='Clip skip', value='1', minimum=1, maximum=12, step=1
)
with gr.Row(): with gr.Row():
resume = gr.Textbox( resume = gr.Textbox(
label='Resume from saved training state', label='Resume from saved training state',
@ -809,209 +820,66 @@ def dreambooth_tab(
gradio_dataset_balancing_tab() gradio_dataset_balancing_tab()
button_run = gr.Button('Train model') button_run = gr.Button('Train model')
settings_list = [
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
logging_dir_input,
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
cache_latent_input,
caption_extention_input,
enable_bucket_input,
gradient_checkpointing_input,
full_fp16_input,
no_token_padding_input,
stop_text_encoder_training_input,
use_8bit_adam_input,
xformers_input,
save_model_as_dropdown,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
color_aug,
flip_aug,
clip_skip,
]
button_open_config.click( button_open_config.click(
open_configuration, open_configuration,
inputs=[ inputs=[config_file_name] + settings_list,
config_file_name, outputs=[config_file_name] + settings_list,
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
logging_dir_input,
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
cache_latent_input,
caption_extention_input,
enable_bucket_input,
gradient_checkpointing_input,
full_fp16_input,
no_token_padding_input,
stop_text_encoder_training_input,
use_8bit_adam_input,
xformers_input,
save_model_as_dropdown,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
color_aug,
flip_aug,
],
outputs=[
config_file_name,
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
logging_dir_input,
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
cache_latent_input,
caption_extention_input,
enable_bucket_input,
gradient_checkpointing_input,
full_fp16_input,
no_token_padding_input,
stop_text_encoder_training_input,
use_8bit_adam_input,
xformers_input,
save_model_as_dropdown,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
color_aug,
flip_aug,
],
) )
button_save_config.click( button_save_config.click(
save_configuration, save_configuration,
inputs=[ inputs=[dummy_db_false, config_file_name] + settings_list,
dummy_db_false,
config_file_name,
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
logging_dir_input,
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
cache_latent_input,
caption_extention_input,
enable_bucket_input,
gradient_checkpointing_input,
full_fp16_input,
no_token_padding_input,
stop_text_encoder_training_input,
use_8bit_adam_input,
xformers_input,
save_model_as_dropdown,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
color_aug,
flip_aug,
],
outputs=[config_file_name], outputs=[config_file_name],
) )
button_save_as_config.click( button_save_as_config.click(
save_configuration, save_configuration,
inputs=[ inputs=[dummy_db_true, config_file_name] + settings_list,
dummy_db_true,
config_file_name,
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
logging_dir_input,
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
cache_latent_input,
caption_extention_input,
enable_bucket_input,
gradient_checkpointing_input,
full_fp16_input,
no_token_padding_input,
stop_text_encoder_training_input,
use_8bit_adam_input,
xformers_input,
save_model_as_dropdown,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
color_aug,
flip_aug,
],
outputs=[config_file_name], outputs=[config_file_name],
) )
button_run.click( button_run.click(
train_model, train_model,
inputs=[ inputs=settings_list,
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
logging_dir_input,
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
cache_latent_input,
caption_extention_input,
enable_bucket_input,
gradient_checkpointing_input,
full_fp16_input,
no_token_padding_input,
stop_text_encoder_training_input,
use_8bit_adam_input,
xformers_input,
save_model_as_dropdown,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
color_aug,
flip_aug,
],
) )
return ( return (

View File

@ -56,6 +56,7 @@ def save_configuration(
caption_extension, caption_extension,
use_8bit_adam, use_8bit_adam,
xformers, xformers,
clip_skip,
): ):
original_file_path = file_path original_file_path = file_path
@ -109,6 +110,7 @@ def save_configuration(
'caption_extension': caption_extension, 'caption_extension': caption_extension,
'use_8bit_adam': use_8bit_adam, 'use_8bit_adam': use_8bit_adam,
'xformers': xformers, 'xformers': xformers,
'clip_skip': clip_skip,
} }
# Save the data to the selected file # Save the data to the selected file
@ -153,6 +155,7 @@ def open_config_file(
caption_extension, caption_extension,
use_8bit_adam, use_8bit_adam,
xformers, xformers,
clip_skip,
): ):
original_file_path = file_path original_file_path = file_path
file_path = get_file_path(file_path) file_path = get_file_path(file_path)
@ -206,6 +209,7 @@ def open_config_file(
my_data.get('caption_extension', caption_extension), my_data.get('caption_extension', caption_extension),
my_data.get('use_8bit_adam', use_8bit_adam), my_data.get('use_8bit_adam', use_8bit_adam),
my_data.get('xformers', xformers), my_data.get('xformers', xformers),
my_data.get('clip_skip', clip_skip),
) )
@ -243,6 +247,7 @@ def train_model(
caption_extension, caption_extension,
use_8bit_adam, use_8bit_adam,
xformers, xformers,
clip_skip,
): ):
def save_inference_file(output_dir, v2, v_parameterization): def save_inference_file(output_dir, v2, v_parameterization):
# Copy inference model for v2 if required # Copy inference model for v2 if required
@ -358,6 +363,8 @@ def train_model(
run_cmd += f' --save_precision={save_precision}' run_cmd += f' --save_precision={save_precision}'
if not save_model_as == 'same as source model': if not save_model_as == 'same as source model':
run_cmd += f' --save_model_as={save_model_as}' run_cmd += f' --save_model_as={save_model_as}'
if clip_skip > 1:
run_cmd += f' --clip_skip={int(clip_skip)}'
print(run_cmd) print(run_cmd)
# Run the command # Run the command
@ -688,6 +695,9 @@ def finetune_tab():
with gr.Row(): with gr.Row():
use_8bit_adam = gr.Checkbox(label='Use 8bit adam', value=True) use_8bit_adam = gr.Checkbox(label='Use 8bit adam', value=True)
xformers = gr.Checkbox(label='Use xformers', value=True) xformers = gr.Checkbox(label='Use xformers', value=True)
clip_skip = gr.Slider(
label='Clip skip', value='1', minimum=1, maximum=12, step=1
)
with gr.Box(): with gr.Box():
with gr.Row(): with gr.Row():
create_caption = gr.Checkbox( create_caption = gr.Checkbox(
@ -733,6 +743,7 @@ def finetune_tab():
caption_extention_input, caption_extention_input,
use_8bit_adam, use_8bit_adam,
xformers, xformers,
clip_skip,
] ]
button_run.click(train_model, inputs=settings_list) button_run.click(train_model, inputs=settings_list)

1
gui.cmd Normal file
View File

@ -0,0 +1 @@
.\venv\Scripts\python.exe kohya_gui.py

View File

@ -72,6 +72,7 @@ def save_configuration(
lora_network_weights, lora_network_weights,
color_aug, color_aug,
flip_aug, flip_aug,
clip_skip,
): ):
original_file_path = file_path original_file_path = file_path
@ -129,6 +130,7 @@ def save_configuration(
'lora_network_weights': lora_network_weights, 'lora_network_weights': lora_network_weights,
'color_aug': color_aug, 'color_aug': color_aug,
'flip_aug': flip_aug, 'flip_aug': flip_aug,
'clip_skip': clip_skip,
} }
# Save the data to the selected file # Save the data to the selected file
@ -177,6 +179,7 @@ def open_configuration(
lora_network_weights, lora_network_weights,
color_aug, color_aug,
flip_aug, flip_aug,
clip_skip,
): ):
original_file_path = file_path original_file_path = file_path
@ -235,6 +238,7 @@ def open_configuration(
my_data.get('lora_network_weights', lora_network_weights), my_data.get('lora_network_weights', lora_network_weights),
my_data.get('color_aug', color_aug), my_data.get('color_aug', color_aug),
my_data.get('flip_aug', flip_aug), my_data.get('flip_aug', flip_aug),
my_data.get('clip_skip', clip_skip),
) )
@ -276,6 +280,7 @@ def train_model(
lora_network_weights, lora_network_weights,
color_aug, color_aug,
flip_aug, flip_aug,
clip_skip,
): ):
def save_inference_file(output_dir, v2, v_parameterization): def save_inference_file(output_dir, v2, v_parameterization):
# Copy inference model for v2 if required # Copy inference model for v2 if required
@ -361,13 +366,13 @@ def train_model(
# Print the result # Print the result
# print(f"{total_steps} total steps") # print(f"{total_steps} total steps")
if reg_data_dir == '': # if reg_data_dir == '':
reg_factor = 1 # reg_factor = 1
else: # else:
print( # print(
'Regularisation images are used... Will double the number of steps required...' # 'Regularisation images are used... Will double the number of steps required...'
) # )
reg_factor = 2 # reg_factor = 2
# calculate max_train_steps # calculate max_train_steps
max_train_steps = int( max_train_steps = int(
@ -375,7 +380,7 @@ def train_model(
float(total_steps) float(total_steps)
/ int(train_batch_size) / int(train_batch_size)
* int(epoch) * int(epoch)
* int(reg_factor) # * int(reg_factor)
) )
) )
print(f'max_train_steps = {max_train_steps}') print(f'max_train_steps = {max_train_steps}')
@ -467,6 +472,8 @@ def train_model(
run_cmd += f' --network_dim={network_dim}' run_cmd += f' --network_dim={network_dim}'
if not lora_network_weights == '': if not lora_network_weights == '':
run_cmd += f' --network_weights={lora_network_weights}' run_cmd += f' --network_weights={lora_network_weights}'
if int(clip_skip) > 1:
run_cmd += f' --clip_skip={int(clip_skip)}'
print(run_cmd) print(run_cmd)
# Run the command # Run the command
@ -860,6 +867,7 @@ def lora_tab(
shuffle_caption = gr.Checkbox( shuffle_caption = gr.Checkbox(
label='Shuffle caption', value=False label='Shuffle caption', value=False
) )
with gr.Row():
save_state = gr.Checkbox( save_state = gr.Checkbox(
label='Save training state', value=False label='Save training state', value=False
) )
@ -872,6 +880,9 @@ def lora_tab(
inputs=[color_aug], inputs=[color_aug],
outputs=[cache_latent_input], outputs=[cache_latent_input],
) )
clip_skip = gr.Slider(
label='Clip skip', value='1', minimum=1, maximum=12, step=1
)
with gr.Row(): with gr.Row():
resume = gr.Textbox( resume = gr.Textbox(
label='Resume from saved training state', label='Resume from saved training state',
@ -935,6 +946,7 @@ def lora_tab(
lora_network_weights, lora_network_weights,
color_aug, color_aug,
flip_aug, flip_aug,
clip_skip,
] ]
button_open_config.click( button_open_config.click(

239
tools/detect_face_rotate.py Normal file
View File

@ -0,0 +1,239 @@
# このスクリプトのライセンスは、train_dreambooth.pyと同じくApache License 2.0とします
# (c) 2022 Kohya S. @kohya_ss
# 横長の画像から顔検出して正立するように回転し、そこを中心に正方形に切り出す
# v2: extract max face if multiple faces are found
# v3: add crop_ratio option
# v4: add multiple faces extraction and min/max size
import argparse
import math
import cv2
import glob
import os
from anime_face_detector import create_detector
from tqdm import tqdm
import numpy as np
KP_REYE = 11
KP_LEYE = 19
SCORE_THRES = 0.90
def detect_faces(detector, image, min_size):
preds = detector(image) # bgr
# print(len(preds))
faces = []
for pred in preds:
bb = pred['bbox']
score = bb[-1]
if score < SCORE_THRES:
continue
left, top, right, bottom = bb[:4]
cx = int((left + right) / 2)
cy = int((top + bottom) / 2)
fw = int(right - left)
fh = int(bottom - top)
lex, ley = pred['keypoints'][KP_LEYE, 0:2]
rex, rey = pred['keypoints'][KP_REYE, 0:2]
angle = math.atan2(ley - rey, lex - rex)
angle = angle / math.pi * 180
faces.append((cx, cy, fw, fh, angle))
faces.sort(key=lambda x: max(x[2], x[3]), reverse=True) # 大きい順
return faces
def rotate_image(image, angle, cx, cy):
h, w = image.shape[0:2]
rot_mat = cv2.getRotationMatrix2D((cx, cy), angle, 1.0)
# # 回転する分、すこし画像サイズを大きくする→とりあえず無効化
# nh = max(h, int(w * math.sin(angle)))
# nw = max(w, int(h * math.sin(angle)))
# if nh > h or nw > w:
# pad_y = nh - h
# pad_t = pad_y // 2
# pad_x = nw - w
# pad_l = pad_x // 2
# m = np.array([[0, 0, pad_l],
# [0, 0, pad_t]])
# rot_mat = rot_mat + m
# h, w = nh, nw
# cx += pad_l
# cy += pad_t
result = cv2.warpAffine(image, rot_mat, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT)
return result, cx, cy
def process(args):
assert (not args.resize_fit) or args.resize_face_size is None, f"resize_fit and resize_face_size can't be specified both / resize_fitとresize_face_sizeはどちらか片方しか指定できません"
assert args.crop_ratio is None or args.resize_face_size is None, f"crop_ratio指定時はresize_face_sizeは指定できません"
# アニメ顔検出モデルを読み込む
print("loading face detector.")
detector = create_detector('yolov3')
# cropの引数を解析する
if args.crop_size is None:
crop_width = crop_height = None
else:
tokens = args.crop_size.split(',')
assert len(tokens) == 2, f"crop_size must be 'width,height' / crop_sizeは'幅,高さ'で指定してください"
crop_width, crop_height = [int(t) for t in tokens]
if args.crop_ratio is None:
crop_h_ratio = crop_v_ratio = None
else:
tokens = args.crop_ratio.split(',')
assert len(tokens) == 2, f"crop_ratio must be 'horizontal,vertical' / crop_ratioは'幅,高さ'の倍率で指定してください"
crop_h_ratio, crop_v_ratio = [float(t) for t in tokens]
# 画像を処理する
print("processing.")
output_extension = ".png"
os.makedirs(args.dst_dir, exist_ok=True)
paths = glob.glob(os.path.join(args.src_dir, "*.png")) + glob.glob(os.path.join(args.src_dir, "*.jpg")) + \
glob.glob(os.path.join(args.src_dir, "*.webp"))
for path in tqdm(paths):
basename = os.path.splitext(os.path.basename(path))[0]
# image = cv2.imread(path) # 日本語ファイル名でエラーになる
image = cv2.imdecode(np.fromfile(path, np.uint8), cv2.IMREAD_UNCHANGED)
if len(image.shape) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
if image.shape[2] == 4:
print(f"image has alpha. ignore / 画像の透明度が設定されているため無視します: {path}")
image = image[:, :, :3].copy() # copyをしないと内部的に透明度情報が付いたままになるらしい
h, w = image.shape[:2]
faces = detect_faces(detector, image, args.multiple_faces)
for i, face in enumerate(faces):
cx, cy, fw, fh, angle = face
face_size = max(fw, fh)
if args.min_size is not None and face_size < args.min_size:
continue
if args.max_size is not None and face_size >= args.max_size:
continue
face_suffix = f"_{i+1:02d}" if args.multiple_faces else ""
# オプション指定があれば回転する
face_img = image
if args.rotate:
face_img, cx, cy = rotate_image(face_img, angle, cx, cy)
# オプション指定があれば顔を中心に切り出す
if crop_width is not None or crop_h_ratio is not None:
cur_crop_width, cur_crop_height = crop_width, crop_height
if crop_h_ratio is not None:
cur_crop_width = int(face_size * crop_h_ratio + .5)
cur_crop_height = int(face_size * crop_v_ratio + .5)
# リサイズを必要なら行う
scale = 1.0
if args.resize_face_size is not None:
# 顔サイズを基準にリサイズする
scale = args.resize_face_size / face_size
if scale < cur_crop_width / w:
print(
f"image width too small in face size based resizing / 顔を基準にリサイズすると画像の幅がcrop sizeより小さい顔が相対的に大きすぎるので顔サイズが変わります: {path}")
scale = cur_crop_width / w
if scale < cur_crop_height / h:
print(
f"image height too small in face size based resizing / 顔を基準にリサイズすると画像の高さがcrop sizeより小さい顔が相対的に大きすぎるので顔サイズが変わります: {path}")
scale = cur_crop_height / h
elif crop_h_ratio is not None:
# 倍率指定の時にはリサイズしない
pass
else:
# 切り出しサイズ指定あり
if w < cur_crop_width:
print(f"image width too small/ 画像の幅がcrop sizeより小さいので画質が劣化します: {path}")
scale = cur_crop_width / w
if h < cur_crop_height:
print(f"image height too small/ 画像の高さがcrop sizeより小さいので画質が劣化します: {path}")
scale = cur_crop_height / h
if args.resize_fit:
scale = max(cur_crop_width / w, cur_crop_height / h)
if scale != 1.0:
w = int(w * scale + .5)
h = int(h * scale + .5)
face_img = cv2.resize(face_img, (w, h), interpolation=cv2.INTER_AREA if scale < 1.0 else cv2.INTER_LANCZOS4)
cx = int(cx * scale + .5)
cy = int(cy * scale + .5)
fw = int(fw * scale + .5)
fh = int(fh * scale + .5)
cur_crop_width = min(cur_crop_width, face_img.shape[1])
cur_crop_height = min(cur_crop_height, face_img.shape[0])
x = cx - cur_crop_width // 2
cx = cur_crop_width // 2
if x < 0:
cx = cx + x
x = 0
elif x + cur_crop_width > w:
cx = cx + (x + cur_crop_width - w)
x = w - cur_crop_width
face_img = face_img[:, x:x+cur_crop_width]
y = cy - cur_crop_height // 2
cy = cur_crop_height // 2
if y < 0:
cy = cy + y
y = 0
elif y + cur_crop_height > h:
cy = cy + (y + cur_crop_height - h)
y = h - cur_crop_height
face_img = face_img[y:y + cur_crop_height]
# # debug
# print(path, cx, cy, angle)
# crp = cv2.resize(image, (image.shape[1]//8, image.shape[0]//8))
# cv2.imshow("image", crp)
# if cv2.waitKey() == 27:
# break
# cv2.destroyAllWindows()
# debug
if args.debug:
cv2.rectangle(face_img, (cx-fw//2, cy-fh//2), (cx+fw//2, cy+fh//2), (255, 0, 255), fw//20)
_, buf = cv2.imencode(output_extension, face_img)
with open(os.path.join(args.dst_dir, f"{basename}{face_suffix}_{cx:04d}_{cy:04d}_{fw:04d}_{fh:04d}{output_extension}"), "wb") as f:
buf.tofile(f)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--src_dir", type=str, help="directory to load images / 画像を読み込むディレクトリ")
parser.add_argument("--dst_dir", type=str, help="directory to save images / 画像を保存するディレクトリ")
parser.add_argument("--rotate", action="store_true", help="rotate images to align faces / 顔が正立するように画像を回転する")
parser.add_argument("--resize_fit", action="store_true",
help="resize to fit smaller side after cropping / 切り出し後の画像の短辺がcrop_sizeにあうようにリサイズする")
parser.add_argument("--resize_face_size", type=int, default=None,
help="resize image before cropping by face size / 切り出し前に顔がこのサイズになるようにリサイズする")
parser.add_argument("--crop_size", type=str, default=None,
help="crop images with 'width,height' pixels, face centered / 顔を中心として'幅,高さ'のサイズで切り出す")
parser.add_argument("--crop_ratio", type=str, default=None,
help="crop images with 'horizontal,vertical' ratio to face, face centered / 顔を中心として顔サイズの'幅倍率,高さ倍率'のサイズで切り出す")
parser.add_argument("--min_size", type=int, default=None,
help="minimum face size to output (included) / 処理対象とする顔の最小サイズ(この値以上)")
parser.add_argument("--max_size", type=int, default=None,
help="maximum face size to output (excluded) / 処理対象とする顔の最大サイズ(この値未満)")
parser.add_argument("--multiple_faces", action="store_true",
help="output each faces / 複数の顔が見つかった場合、それぞれを切り出す")
parser.add_argument("--debug", action="store_true", help="render rect for face / 処理後画像の顔位置に矩形を描画します")
args = parser.parse_args()
process(args)