Merge pull request #292 from bmaltais/dev

Fix again the custom model config load
This commit is contained in:
bmaltais 2023-03-03 22:09:08 -05:00 committed by GitHub
commit c159c130af
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 81 additions and 31 deletions

View File

@ -272,7 +272,7 @@ def save_inference_file(output_dir, v2, v_parameterization, output_name):
) )
def set_pretrained_model_name_or_path_input(value, pretrained_model_name_or_path, v2, v_parameterization): def set_pretrained_model_name_or_path_input(model_list, pretrained_model_name_or_path, v2, v_parameterization):
# define a list of substrings to search for # define a list of substrings to search for
substrings_v2 = [ substrings_v2 = [
'stabilityai/stable-diffusion-2-1-base', 'stabilityai/stable-diffusion-2-1-base',
@ -280,12 +280,12 @@ def set_pretrained_model_name_or_path_input(value, pretrained_model_name_or_path
] ]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list # check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
if str(value) in substrings_v2: if str(model_list) in substrings_v2:
print('SD v2 model detected. Setting --v2 parameter') print('SD v2 model detected. Setting --v2 parameter')
v2 = True v2 = True
v_parameterization = False v_parameterization = False
return value, v2, v_parameterization return model_list, v2, v_parameterization
# define a list of substrings to search for v-objective # define a list of substrings to search for v-objective
substrings_v_parameterization = [ substrings_v_parameterization = [
@ -294,14 +294,14 @@ def set_pretrained_model_name_or_path_input(value, pretrained_model_name_or_path
] ]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list # check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
if str(value) in substrings_v_parameterization: if str(model_list) in substrings_v_parameterization:
print( print(
'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization' 'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization'
) )
v2 = True v2 = True
v_parameterization = True v_parameterization = True
return value, v2, v_parameterization return model_list, v2, v_parameterization
# define a list of substrings to v1.x # define a list of substrings to v1.x
substrings_v1_model = [ substrings_v1_model = [
@ -309,19 +309,18 @@ def set_pretrained_model_name_or_path_input(value, pretrained_model_name_or_path
'runwayml/stable-diffusion-v1-5', 'runwayml/stable-diffusion-v1-5',
] ]
if str(value) in substrings_v1_model: if str(model_list) in substrings_v1_model:
v2 = False v2 = False
v_parameterization = False v_parameterization = False
return value, v2, v_parameterization return model_list, v2, v_parameterization
if value == 'custom': if model_list == 'custom':
if str(pretrained_model_name_or_path) in substrings_v1_model or str(pretrained_model_name_or_path) in substrings_v2 or str(pretrained_model_name_or_path) in substrings_v_parameterization: if str(pretrained_model_name_or_path) in substrings_v1_model or str(pretrained_model_name_or_path) in substrings_v2 or str(pretrained_model_name_or_path) in substrings_v_parameterization:
value = '' pretrained_model_name_or_path = ''
v2 = False v2 = False
v_parameterization = False v_parameterization = False
return pretrained_model_name_or_path, v2, v_parameterization
return value, v2, v_parameterization
### ###
### Gradio common GUI section ### Gradio common GUI section

View File

@ -3,11 +3,11 @@
# Thanks to cloneofsimo and kohya # Thanks to cloneofsimo and kohya
import argparse import argparse
import os
import torch import torch
from safetensors.torch import load_file, save_file, safe_open from safetensors.torch import load_file, save_file, safe_open
from tqdm import tqdm from tqdm import tqdm
from library import train_util, model_util from library import train_util, model_util
import numpy as np
def load_state_dict(file_name, dtype): def load_state_dict(file_name, dtype):
@ -38,13 +38,34 @@ def save_to_file(file_name, model, state_dict, dtype, metadata):
torch.save(model, file_name) torch.save(model, file_name)
def resize_lora_model(lora_sd, new_rank, save_dtype, device, sv_ratio, verbose): def index_sv_cumulative(S, target):
original_sum = float(torch.sum(S))
cumulative_sums = torch.cumsum(S, dim=0)/original_sum
index = int(torch.searchsorted(cumulative_sums, target)) + 1
if index >= len(S):
index = len(S) - 1
return index
def index_sv_fro(S, target):
S_squared = S.pow(2)
s_fro_sq = float(torch.sum(S_squared))
sum_S_squared = torch.cumsum(S_squared, dim=0)/s_fro_sq
index = int(torch.searchsorted(sum_S_squared, target**2)) + 1
if index >= len(S):
index = len(S) - 1
return index
def resize_lora_model(lora_sd, new_rank, save_dtype, device, dynamic_method, dynamic_param, verbose):
network_alpha = None network_alpha = None
network_dim = None network_dim = None
verbose_str = "\n" verbose_str = "\n"
ratio_flag = False fro_list = []
CLAMP_QUANTILE = 0.99 CLAMP_QUANTILE = 1 # 0.99
# Extract loaded lora dim and alpha # Extract loaded lora dim and alpha
for key, value in lora_sd.items(): for key, value in lora_sd.items():
@ -58,12 +79,12 @@ def resize_lora_model(lora_sd, new_rank, save_dtype, device, sv_ratio, verbose):
network_alpha = network_dim network_alpha = network_dim
scale = network_alpha/network_dim scale = network_alpha/network_dim
if not sv_ratio:
if dynamic_method:
print(f"Dynamically determining new alphas and dims based off {dynamic_method}: {dynamic_param}")
else:
new_alpha = float(scale*new_rank) # calculate new alpha from scale new_alpha = float(scale*new_rank) # calculate new alpha from scale
print(f"old dimension: {network_dim}, old alpha: {network_alpha}, new dim: {new_rank}, new alpha: {new_alpha}") print(f"old dimension: {network_dim}, old alpha: {network_alpha}, new dim: {new_rank}, new alpha: {new_alpha}")
else:
print(f"Dynamically determining new alphas and dims based off sv ratio: {sv_ratio}")
ratio_flag = True
lora_down_weight = None lora_down_weight = None
lora_up_weight = None lora_up_weight = None
@ -101,22 +122,43 @@ def resize_lora_model(lora_sd, new_rank, save_dtype, device, sv_ratio, verbose):
U, S, Vh = torch.linalg.svd(full_weight_matrix) U, S, Vh = torch.linalg.svd(full_weight_matrix)
if ratio_flag: if dynamic_method=="sv_ratio":
# Calculate new dim and alpha for dynamic sizing # Calculate new dim and alpha based off ratio
max_sv = S[0] max_sv = S[0]
min_sv = max_sv/sv_ratio min_sv = max_sv/dynamic_param
new_rank = torch.sum(S > min_sv).item() new_rank = torch.sum(S > min_sv).item()
new_rank = max(new_rank, 1) new_rank = max(new_rank, 1)
new_alpha = float(scale*new_rank) new_alpha = float(scale*new_rank)
elif dynamic_method=="sv_cumulative":
# Calculate new dim and alpha based off cumulative sum
new_rank = index_sv_cumulative(S, dynamic_param)
new_rank = max(new_rank, 1)
new_alpha = float(scale*new_rank)
elif dynamic_method=="sv_fro":
# Calculate new dim and alpha based off sqrt sum of squares
new_rank = index_sv_fro(S, dynamic_param)
new_rank = max(new_rank, 1)
new_alpha = float(scale*new_rank)
if verbose: if verbose:
s_sum = torch.sum(torch.abs(S)) s_sum = torch.sum(torch.abs(S))
s_rank = torch.sum(torch.abs(S[:new_rank])) s_rank = torch.sum(torch.abs(S[:new_rank]))
verbose_str+=f"{block_down_name:75} | "
verbose_str+=f"sum(S) retained: {(s_rank)/s_sum:.1%}, max(S) ratio: {S[0]/S[new_rank]:0.1f}"
if verbose and ratio_flag: S_squared = S.pow(2)
verbose_str+=f", dynamic| dim: {new_rank}, alpha: {new_alpha}\n" s_fro = torch.sqrt(torch.sum(S_squared))
s_red_fro = torch.sqrt(torch.sum(S_squared[:new_rank]))
fro_percent = float(s_red_fro/s_fro)
if not np.isnan(fro_percent):
fro_list.append(float(fro_percent))
verbose_str+=f"{block_down_name:75} | "
verbose_str+=f"sum(S) retained: {(s_rank)/s_sum:.1%}, fro retained: {fro_percent:.1%}, max(S) ratio: {S[0]/S[new_rank]:0.1f}"
if verbose and dynamic_method:
verbose_str+=f", dynamic | dim: {new_rank}, alpha: {new_alpha}\n"
else: else:
verbose_str+=f"\n" verbose_str+=f"\n"
@ -153,6 +195,8 @@ def resize_lora_model(lora_sd, new_rank, save_dtype, device, sv_ratio, verbose):
if verbose: if verbose:
print(verbose_str) print(verbose_str)
print(f"Average Frobenius norm retention: {np.mean(fro_list):.2%} | std: {np.std(fro_list):0.3f}")
print("resizing complete") print("resizing complete")
return o_lora_sd, network_dim, new_alpha return o_lora_sd, network_dim, new_alpha
@ -168,6 +212,9 @@ def resize(args):
return torch.bfloat16 return torch.bfloat16
return None return None
if args.dynamic_method and not args.dynamic_param:
raise Exception("If using dynamic_method, then dynamic_param is required")
merge_dtype = str_to_dtype('float') # matmul method above only seems to work in float32 merge_dtype = str_to_dtype('float') # matmul method above only seems to work in float32
save_dtype = str_to_dtype(args.save_precision) save_dtype = str_to_dtype(args.save_precision)
if save_dtype is None: if save_dtype is None:
@ -177,19 +224,20 @@ def resize(args):
lora_sd, metadata = load_state_dict(args.model, merge_dtype) lora_sd, metadata = load_state_dict(args.model, merge_dtype)
print("resizing rank...") print("resizing rank...")
state_dict, old_dim, new_alpha = resize_lora_model(lora_sd, args.new_rank, save_dtype, args.device, args.sv_ratio, args.verbose) state_dict, old_dim, new_alpha = resize_lora_model(lora_sd, args.new_rank, save_dtype, args.device, args.dynamic_method, args.dynamic_param, args.verbose)
# update metadata # update metadata
if metadata is None: if metadata is None:
metadata = {} metadata = {}
comment = metadata.get("ss_training_comment", "") comment = metadata.get("ss_training_comment", "")
if not args.sv_ratio:
if not args.dynamic_method:
metadata["ss_training_comment"] = f"dimension is resized from {old_dim} to {args.new_rank}; {comment}" metadata["ss_training_comment"] = f"dimension is resized from {old_dim} to {args.new_rank}; {comment}"
metadata["ss_network_dim"] = str(args.new_rank) metadata["ss_network_dim"] = str(args.new_rank)
metadata["ss_network_alpha"] = str(new_alpha) metadata["ss_network_alpha"] = str(new_alpha)
else: else:
metadata["ss_training_comment"] = f"Dynamic resize from {old_dim} with ratio {args.sv_ratio}; {comment}" metadata["ss_training_comment"] = f"Dynamic resize with {args.dynamic_method}: {args.dynamic_param} from {old_dim}; {comment}"
metadata["ss_network_dim"] = 'Dynamic' metadata["ss_network_dim"] = 'Dynamic'
metadata["ss_network_alpha"] = 'Dynamic' metadata["ss_network_alpha"] = 'Dynamic'
@ -215,8 +263,11 @@ if __name__ == '__main__':
parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う") parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う")
parser.add_argument("--verbose", action="store_true", parser.add_argument("--verbose", action="store_true",
help="Display verbose resizing information / rank変更時の詳細情報を出力する") help="Display verbose resizing information / rank変更時の詳細情報を出力する")
parser.add_argument("--sv_ratio", type=float, default=None, parser.add_argument("--dynamic_method", type=str, default=None, choices=[None, "sv_ratio", "sv_fro", "sv_cumulative"],
help="Specify svd ratio for dim calcs. Will override --new_rank") help="Specify dynamic resizing method, will override --new_rank")
parser.add_argument("--dynamic_param", type=float, default=None,
help="Specify target for dynamic reduction")
args = parser.parse_args() args = parser.parse_args()
resize(args) resize(args)