From c29f96a1f595b6c214f4405ea1f907a30af2ce31 Mon Sep 17 00:00:00 2001 From: bmaltais Date: Sat, 4 Mar 2023 08:04:49 -0500 Subject: [PATCH] Add extract locon tool --- tools/extract_locon.py | 106 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 106 insertions(+) create mode 100644 tools/extract_locon.py diff --git a/tools/extract_locon.py b/tools/extract_locon.py new file mode 100644 index 0000000..ca72166 --- /dev/null +++ b/tools/extract_locon.py @@ -0,0 +1,106 @@ +# +# From: https://raw.githubusercontent.com/KohakuBlueleaf/LoCon/main/extract_locon.py +# + +import argparse + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument( + "base_model", help="The model which use it to train the dreambooth model", + default='', type=str + ) + parser.add_argument( + "db_model", help="the dreambooth model you want to extract the locon", + default='', type=str + ) + parser.add_argument( + "output_name", help="the output model", + default='./out.pt', type=str + ) + parser.add_argument( + "--is_v2", help="Your base/db model is sd v2 or not", + default=False, action="store_true" + ) + parser.add_argument( + "--device", help="Which device you want to use to extract the locon", + default='cpu', type=str + ) + parser.add_argument( + "--mode", + help=( + 'extraction mode, can be "fixed", "threshold", "ratio", "percentile". ' + 'If not "fixed", network_dim and conv_dim will be ignored' + ), + default='fixed', type=str + ) + parser.add_argument( + "--linear_dim", help="network dim for linear layer in fixed mode", + default=1, type=int + ) + parser.add_argument( + "--conv_dim", help="network dim for conv layer in fixed mode", + default=1, type=int + ) + parser.add_argument( + "--linear_threshold", help="singular value threshold for linear layer in threshold mode", + default=0., type=float + ) + parser.add_argument( + "--conv_threshold", help="singular value threshold for conv layer in threshold mode", + default=0., type=float + ) + parser.add_argument( + "--linear_ratio", help="singular ratio for linear layer in ratio mode", + default=0., type=float + ) + parser.add_argument( + "--conv_ratio", help="singular ratio for conv layer in ratio mode", + default=0., type=float + ) + parser.add_argument( + "--linear_percentile", help="singular value percentile for linear layer percentile mode", + default=1., type=float + ) + parser.add_argument( + "--conv_percentile", help="singular value percentile for conv layer percentile mode", + default=1., type=float + ) + return parser.parse_args() +ARGS = get_args() + +from locon.utils import extract_diff +from locon.kohya_model_utils import load_models_from_stable_diffusion_checkpoint + +import torch + + +def main(): + args = ARGS + base = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.base_model) + db = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.db_model) + + linear_mode_param = { + 'fixed': args.linear_dim, + 'threshold': args.linear_threshold, + 'ratio': args.linear_ratio, + 'percentile': args.linear_percentile, + }[args.mode] + conv_mode_param = { + 'fixed': args.conv_dim, + 'threshold': args.conv_threshold, + 'ratio': args.conv_ratio, + 'percentile': args.conv_percentile, + }[args.mode] + + state_dict = extract_diff( + base, db, + args.mode, + linear_mode_param, conv_mode_param, + args.device + ) + torch.save(state_dict, args.output_name) + + +if __name__ == '__main__': + main() \ No newline at end of file