Merge pull request #227 from bmaltais/dev

v20.8.1
This commit is contained in:
bmaltais 2023-02-23 19:26:16 -05:00 committed by GitHub
commit c7e99eb54b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 538 additions and 42 deletions

View File

@ -163,6 +163,15 @@ This will store your a backup file with your current locally installed pip packa
## Change History
* 2023/02/23 (v20.8.1):
- Fix instability training issue in `train_network.py`.
- `fp16` training is probably not affected by this issue.
- Training with `float` for SD2.x models will work now. Also training with bf16 might be improved.
- This issue seems to have occurred in [PR#190](https://github.com/kohya-ss/sd-scripts/pull/190).
- Add some metadata to LoRA model. Thanks to space-nuko!
- Raise an error if optimizer options conflict (e.g. `--optimizer_type` and `--use_8bit_adam`.)
- Support ControlNet in `gen_img_diffusers.py` (no documentation yet.)
* 2023/02/22 (v20.8.0):
- Add gui support for optimizers: `AdamW, AdamW8bit, Lion, SGDNesterov, SGDNesterov8bit, DAdaptation, AdaFactor`
- Add gui support for `--noise_offset`

View File

@ -285,8 +285,14 @@ def train(args):
current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず
if args.logging_dir is not None:
logs = {"loss": current_loss, "lr": float(lr_scheduler.get_last_lr()[0])}
logs = {"avr_loss": loss_total / (step+1)}
if args.optimizer_type.lower() == "DAdaptation".lower(): # tracking d*lr value
# print(lr_scheduler.optimizers)
logs["lr/d*lr"] = lr_scheduler.optimizers[0].param_groups[0]['d']*lr_scheduler.optimizers[0].param_groups[0]['lr']
logs["d"] = lr_scheduler.optimizers[0].param_groups[0]['d']
logs["lrD"] = lr_scheduler.optimizers[0].param_groups[0]['lr']
logs["gsq_weighted"] = lr_scheduler.optimizers[0].param_groups[0]['gsq_weighted']
accelerator.log(logs, step=global_step)
# TODO moving averageにする

View File

@ -47,7 +47,7 @@ VGG(
"""
import json
from typing import List, Optional, Union
from typing import Any, List, NamedTuple, Optional, Tuple, Union, Callable
import glob
import importlib
import inspect
@ -60,7 +60,6 @@ import math
import os
import random
import re
from typing import Any, Callable, List, Optional, Union
import diffusers
import numpy as np
@ -81,6 +80,8 @@ from PIL import Image
from PIL.PngImagePlugin import PngInfo
import library.model_util as model_util
import tools.original_control_net as original_control_net
from tools.original_control_net import ControlNetInfo
# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
@ -487,6 +488,9 @@ class PipelineLike():
self.vgg16_feat_model = torchvision.models._utils.IntermediateLayerGetter(vgg16_model.features, return_layers=return_layers)
self.vgg16_normalize = transforms.Normalize(mean=VGG16_IMAGE_MEAN, std=VGG16_IMAGE_STD)
# ControlNet
self.control_nets: List[ControlNetInfo] = []
# Textual Inversion
def add_token_replacement(self, target_token_id, rep_token_ids):
self.token_replacements[target_token_id] = rep_token_ids
@ -500,7 +504,11 @@ class PipelineLike():
new_tokens.append(token)
return new_tokens
def set_control_nets(self, ctrl_nets):
self.control_nets = ctrl_nets
# region xformersとか使う部分独自に書き換えるので関係なし
def enable_xformers_memory_efficient_attention(self):
r"""
Enable memory efficient attention as implemented in xformers.
@ -752,7 +760,7 @@ class PipelineLike():
text_embeddings_clip = self.clip_model.get_text_features(clip_text_input)
text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True) # prompt複数件でもOK
if self.clip_image_guidance_scale > 0 or self.vgg16_guidance_scale > 0 and clip_guide_images is not None:
if self.clip_image_guidance_scale > 0 or self.vgg16_guidance_scale > 0 and clip_guide_images is not None or self.control_nets:
if isinstance(clip_guide_images, PIL.Image.Image):
clip_guide_images = [clip_guide_images]
@ -765,7 +773,7 @@ class PipelineLike():
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
if len(image_embeddings_clip) == 1:
image_embeddings_clip = image_embeddings_clip.repeat((batch_size, 1, 1, 1))
else:
elif self.vgg16_guidance_scale > 0:
size = (width // VGG16_INPUT_RESIZE_DIV, height // VGG16_INPUT_RESIZE_DIV) # とりあえず1/4に小さいか?
clip_guide_images = [preprocess_vgg16_guide_image(im, size) for im in clip_guide_images]
clip_guide_images = torch.cat(clip_guide_images, dim=0)
@ -774,6 +782,10 @@ class PipelineLike():
image_embeddings_vgg16 = self.vgg16_feat_model(clip_guide_images)['feat']
if len(image_embeddings_vgg16) == 1:
image_embeddings_vgg16 = image_embeddings_vgg16.repeat((batch_size, 1, 1, 1))
else:
# ControlNetのhintにguide imageを流用する
# 前処理はControlNet側で行う
pass
# set timesteps
self.scheduler.set_timesteps(num_inference_steps, self.device)
@ -864,12 +876,21 @@ class PipelineLike():
extra_step_kwargs["eta"] = eta
num_latent_input = (3 if negative_scale is not None else 2) if do_classifier_free_guidance else 1
if self.control_nets:
guided_hints = original_control_net.get_guided_hints(self.control_nets, num_latent_input, batch_size, clip_guide_images)
for i, t in enumerate(tqdm(timesteps)):
# expand the latents if we are doing classifier free guidance
latent_model_input = latents.repeat((num_latent_input, 1, 1, 1))
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
if self.control_nets:
noise_pred = original_control_net.call_unet_and_control_net(
i, num_latent_input, self.unet, self.control_nets, guided_hints, i / len(timesteps), latent_model_input, t, text_embeddings).sample
else:
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
if do_classifier_free_guidance:
@ -1817,6 +1838,34 @@ def preprocess_mask(mask):
# return text_encoder
class BatchDataBase(NamedTuple):
# バッチ分割が必要ないデータ
step: int
prompt: str
negative_prompt: str
seed: int
init_image: Any
mask_image: Any
clip_prompt: str
guide_image: Any
class BatchDataExt(NamedTuple):
# バッチ分割が必要なデータ
width: int
height: int
steps: int
scale: float
negative_scale: float
strength: float
network_muls: Tuple[float]
class BatchData(NamedTuple):
base: BatchDataBase
ext: BatchDataExt
def main(args):
if args.fp16:
dtype = torch.float16
@ -1995,11 +2044,13 @@ def main(args):
# networkを組み込む
if args.network_module:
networks = []
network_default_muls = []
for i, network_module in enumerate(args.network_module):
print("import network module:", network_module)
imported_module = importlib.import_module(network_module)
network_mul = 1.0 if args.network_mul is None or len(args.network_mul) <= i else args.network_mul[i]
network_default_muls.append(network_mul)
net_kwargs = {}
if args.network_args and i < len(args.network_args):
@ -2014,7 +2065,7 @@ def main(args):
network_weight = args.network_weights[i]
print("load network weights from:", network_weight)
if model_util.is_safetensors(network_weight):
if model_util.is_safetensors(network_weight) and args.network_show_meta:
from safetensors.torch import safe_open
with safe_open(network_weight, framework="pt") as f:
metadata = f.metadata()
@ -2037,6 +2088,18 @@ def main(args):
else:
networks = []
# ControlNetの処理
control_nets: List[ControlNetInfo] = []
if args.control_net_models:
for i, model in enumerate(args.control_net_models):
prep_type = None if not args.control_net_preps or len(args.control_net_preps) <= i else args.control_net_preps[i]
weight = 1.0 if not args.control_net_weights or len(args.control_net_weights) <= i else args.control_net_weights[i]
ratio = 1.0 if not args.control_net_ratios or len(args.control_net_ratios) <= i else args.control_net_ratios[i]
ctrl_unet, ctrl_net = original_control_net.load_control_net(args.v2, unet, model)
prep = original_control_net.load_preprocess(prep_type)
control_nets.append(ControlNetInfo(ctrl_unet, ctrl_net, prep, weight, ratio))
if args.opt_channels_last:
print(f"set optimizing: channels last")
text_encoder.to(memory_format=torch.channels_last)
@ -2050,9 +2113,14 @@ def main(args):
if vgg16_model is not None:
vgg16_model.to(memory_format=torch.channels_last)
for cn in control_nets:
cn.unet.to(memory_format=torch.channels_last)
cn.net.to(memory_format=torch.channels_last)
pipe = PipelineLike(device, vae, text_encoder, tokenizer, unet, scheduler, args.clip_skip,
clip_model, args.clip_guidance_scale, args.clip_image_guidance_scale,
vgg16_model, args.vgg16_guidance_scale, args.vgg16_guidance_layer)
pipe.set_control_nets(control_nets)
print("pipeline is ready.")
if args.diffusers_xformers:
@ -2186,9 +2254,12 @@ def main(args):
prev_image = None # for VGG16 guided
if args.guide_image_path is not None:
print(f"load image for CLIP/VGG16 guidance: {args.guide_image_path}")
guide_images = load_images(args.guide_image_path)
print(f"loaded {len(guide_images)} guide images for CLIP/VGG16 guidance")
print(f"load image for CLIP/VGG16/ControlNet guidance: {args.guide_image_path}")
guide_images = []
for p in args.guide_image_path:
guide_images.extend(load_images(p))
print(f"loaded {len(guide_images)} guide images for guidance")
if len(guide_images) == 0:
print(f"No guide image, use previous generated image. / ガイド画像がありません。直前に生成した画像を使います: {args.image_path}")
guide_images = None
@ -2219,33 +2290,37 @@ def main(args):
iter_seed = random.randint(0, 0x7fffffff)
# バッチ処理の関数
def process_batch(batch, highres_fix, highres_1st=False):
def process_batch(batch: List[BatchData], highres_fix, highres_1st=False):
batch_size = len(batch)
# highres_fixの処理
if highres_fix and not highres_1st:
# 1st stageのバッチを作成して呼び出す
# 1st stageのバッチを作成して呼び出す:サイズを小さくして呼び出す
print("process 1st stage1")
batch_1st = []
for params1, (width, height, steps, scale, negative_scale, strength) in batch:
width_1st = int(width * args.highres_fix_scale + .5)
height_1st = int(height * args.highres_fix_scale + .5)
for base, ext in batch:
width_1st = int(ext.width * args.highres_fix_scale + .5)
height_1st = int(ext.height * args.highres_fix_scale + .5)
width_1st = width_1st - width_1st % 32
height_1st = height_1st - height_1st % 32
batch_1st.append((params1, (width_1st, height_1st, args.highres_fix_steps, scale, negative_scale, strength)))
ext_1st = BatchDataExt(width_1st, height_1st, args.highres_fix_steps, ext.scale,
ext.negative_scale, ext.strength, ext.network_muls)
batch_1st.append(BatchData(base, ext_1st))
images_1st = process_batch(batch_1st, True, True)
# 2nd stageのバッチを作成して以下処理する
print("process 2nd stage1")
batch_2nd = []
for i, (b1, image) in enumerate(zip(batch, images_1st)):
image = image.resize((width, height), resample=PIL.Image.LANCZOS)
(step, prompt, negative_prompt, seed, _, _, clip_prompt, guide_image), params2 = b1
batch_2nd.append(((step, prompt, negative_prompt, seed+1, image, None, clip_prompt, guide_image), params2))
for i, (bd, image) in enumerate(zip(batch, images_1st)):
image = image.resize((bd.ext.width, bd.ext.height), resample=PIL.Image.LANCZOS) # img2imgとして設定
bd_2nd = BatchData(BatchDataBase(*bd.base[0:3], bd.base.seed+1, image, None, *bd.base[6:]), bd.ext)
batch_2nd.append(bd_2nd)
batch = batch_2nd
(step_first, _, _, _, init_image, mask_image, _, guide_image), (width,
height, steps, scale, negative_scale, strength) = batch[0]
# このバッチの情報を取り出す
(step_first, _, _, _, init_image, mask_image, _, guide_image), \
(width, height, steps, scale, negative_scale, strength, network_muls) = batch[0]
noise_shape = (LATENT_CHANNELS, height // DOWNSAMPLING_FACTOR, width // DOWNSAMPLING_FACTOR)
prompts = []
@ -2295,9 +2370,13 @@ def main(args):
all_masks_are_same = mask_images[-2] is mask_image
if guide_image is not None:
guide_images.append(guide_image)
if i > 0 and all_guide_images_are_same:
all_guide_images_are_same = guide_images[-2] is guide_image
if type(guide_image) is list:
guide_images.extend(guide_image)
all_guide_images_are_same = False
else:
guide_images.append(guide_image)
if i > 0 and all_guide_images_are_same:
all_guide_images_are_same = guide_images[-2] is guide_image
# make start code
torch.manual_seed(seed)
@ -2320,7 +2399,19 @@ def main(args):
if guide_images is not None and all_guide_images_are_same:
guide_images = guide_images[0]
# ControlNet使用時はguide imageをリサイズする
if control_nets:
# TODO resampleのメソッド
guide_images = guide_images if type(guide_images) == list else [guide_images]
guide_images = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in guide_images]
if len(guide_images) == 1:
guide_images = guide_images[0]
# generate
if networks:
for n, m in zip(networks, network_muls if network_muls else network_default_muls):
n.set_multiplier(m)
images = pipe(prompts, negative_prompts, init_images, mask_images, height, width, steps, scale, negative_scale, strength, latents=start_code,
output_type='pil', max_embeddings_multiples=max_embeddings_multiples, img2img_noise=i2i_noises, clip_prompts=clip_prompts, clip_guide_images=guide_images)[0]
if highres_1st and not args.highres_fix_save_1st:
@ -2398,6 +2489,7 @@ def main(args):
strength = 0.8 if args.strength is None else args.strength
negative_prompt = ""
clip_prompt = None
network_muls = None
prompt_args = prompt.strip().split(' --')
prompt = prompt_args[0]
@ -2461,6 +2553,15 @@ def main(args):
clip_prompt = m.group(1)
print(f"clip prompt: {clip_prompt}")
continue
m = re.match(r'am ([\d\.\-,]+)', parg, re.IGNORECASE)
if m: # network multiplies
network_muls = [float(v) for v in m.group(1).split(",")]
while len(network_muls) < len(networks):
network_muls.append(network_muls[-1])
print(f"network mul: {network_muls}")
continue
except ValueError as ex:
print(f"Exception in parsing / 解析エラー: {parg}")
print(ex)
@ -2498,7 +2599,12 @@ def main(args):
mask_image = mask_images[global_step % len(mask_images)]
if guide_images is not None:
guide_image = guide_images[global_step % len(guide_images)]
if control_nets: # 複数件の場合あり
c = len(control_nets)
p = global_step % (len(guide_images) // c)
guide_image = guide_images[p * c:p * c + c]
else:
guide_image = guide_images[global_step % len(guide_images)]
elif args.clip_image_guidance_scale > 0 or args.vgg16_guidance_scale > 0:
if prev_image is None:
print("Generate 1st image without guide image.")
@ -2506,9 +2612,8 @@ def main(args):
print("Use previous image as guide image.")
guide_image = prev_image
# TODO named tupleか何かにする
b1 = ((global_step, prompt, negative_prompt, seed, init_image, mask_image, clip_prompt, guide_image),
(width, height, steps, scale, negative_scale, strength))
b1 = BatchData(BatchDataBase(global_step, prompt, negative_prompt, seed, init_image, mask_image, clip_prompt, guide_image),
BatchDataExt(width, height, steps, scale, negative_scale, strength, tuple(network_muls) if network_muls else None))
if len(batch_data) > 0 and batch_data[-1][1] != b1[1]: # バッチ分割必要?
process_batch(batch_data, highres_fix)
batch_data.clear()
@ -2578,12 +2683,15 @@ if __name__ == '__main__':
parser.add_argument("--opt_channels_last", action='store_true',
help='set channels last option to model / モデルにchannels lastを指定し最適化する')
parser.add_argument("--network_module", type=str, default=None, nargs='*',
help='Hypernetwork module to use / Hypernetworkを使う時そのモジュール名')
help='additional network module to use / 追加ネットワークを使う時そのモジュール名')
parser.add_argument("--network_weights", type=str, default=None, nargs='*',
help='Hypernetwork weights to load / Hypernetworkの重み')
parser.add_argument("--network_mul", type=float, default=None, nargs='*', help='Hypernetwork multiplier / Hypernetworkの効果の倍率')
help='additional network weights to load / 追加ネットワークの重み')
parser.add_argument("--network_mul", type=float, default=None, nargs='*',
help='additional network multiplier / 追加ネットワークの効果の倍率')
parser.add_argument("--network_args", type=str, default=None, nargs='*',
help='additional argmuments for network (key=value) / ネットワークへの追加の引数')
parser.add_argument("--network_show_meta", action='store_true',
help='show metadata of network model / ネットワークモデルのメタデータを表示する')
parser.add_argument("--textual_inversion_embeddings", type=str, default=None, nargs='*',
help='Embeddings files of Textual Inversion / Textual Inversionのembeddings')
parser.add_argument("--clip_skip", type=int, default=None, help='layer number from bottom to use in CLIP / CLIPの後ろからn層目の出力を使う')
@ -2597,7 +2705,8 @@ if __name__ == '__main__':
help='enable VGG16 guided SD by image, scale for guidance / 画像によるVGG16 guided SDを有効にしてこのscaleを適用する')
parser.add_argument("--vgg16_guidance_layer", type=int, default=20,
help='layer of VGG16 to calculate contents guide (1~30, 20 for conv4_2) / VGG16のcontents guideに使うレイヤー番号 (1~30、20はconv4_2)')
parser.add_argument("--guide_image_path", type=str, default=None, help="image to CLIP guidance / CLIP guided SDでガイドに使う画像")
parser.add_argument("--guide_image_path", type=str, default=None, nargs="*",
help="image to CLIP guidance / CLIP guided SDでガイドに使う画像")
parser.add_argument("--highres_fix_scale", type=float, default=None,
help="enable highres fix, reso scale for 1st stage / highres fixを有効にして最初の解像度をこのscaleにする")
parser.add_argument("--highres_fix_steps", type=int, default=28,
@ -2607,5 +2716,13 @@ if __name__ == '__main__':
parser.add_argument("--negative_scale", type=float, default=None,
help="set another guidance scale for negative prompt / ネガティブプロンプトのscaleを指定する")
parser.add_argument("--control_net_models", type=str, default=None, nargs='*',
help='ControlNet models to use / 使用するControlNetのモデル名')
parser.add_argument("--control_net_preps", type=str, default=None, nargs='*',
help='ControlNet preprocess to use / 使用するControlNetのプリプロセス名')
parser.add_argument("--control_net_weights", type=float, default=None, nargs='*', help='ControlNet weights / ControlNetの重み')
parser.add_argument("--control_net_ratios", type=float, default=None, nargs='*',
help='ControlNet guidance ratio for steps / ControlNetでガイドするステップ比率')
args = parser.parse_args()
main(args)

View File

@ -1372,8 +1372,8 @@ def add_sd_models_arguments(parser: argparse.ArgumentParser):
def add_optimizer_arguments(parser: argparse.ArgumentParser):
parser.add_argument("--optimizer_type", type=str, default="AdamW",
help="Optimizer to use / オプティマイザの種類: AdamW, AdamW8bit, Lion, SGDNesterov, SGDNesterov8bit, DAdaptation, AdaFactor")
parser.add_argument("--optimizer_type", type=str, default="",
help="Optimizer to use / オプティマイザの種類: AdamW (default), AdamW8bit, Lion, SGDNesterov, SGDNesterov8bit, DAdaptation, AdaFactor")
# backward compatibility
parser.add_argument("--use_8bit_adam", action="store_true",
@ -1532,11 +1532,16 @@ def get_optimizer(args, trainable_params):
optimizer_type = args.optimizer_type
if args.use_8bit_adam:
print(f"*** use_8bit_adam option is specified. optimizer_type is ignored / use_8bit_adamオプションが指定されているためoptimizer_typeは無視されます")
assert not args.use_lion_optimizer, "both option use_8bit_adam and use_lion_optimizer are specified / use_8bit_adamとuse_lion_optimizerの両方のオプションが指定されています"
assert optimizer_type is None or optimizer_type == "", "both option use_8bit_adam and optimizer_type are specified / use_8bit_adamとoptimizer_typeの両方のオプションが指定されています"
optimizer_type = "AdamW8bit"
elif args.use_lion_optimizer:
print(f"*** use_lion_optimizer option is specified. optimizer_type is ignored / use_lion_optimizerオプションが指定されているためoptimizer_typeは無視されます")
assert optimizer_type is None or optimizer_type == "", "both option use_lion_optimizer and optimizer_type are specified / use_lion_optimizerとoptimizer_typeの両方のオプションが指定されています"
optimizer_type = "Lion"
if optimizer_type is None or optimizer_type == "":
optimizer_type = "AdamW"
optimizer_type = optimizer_type.lower()
# 引数を分解するboolとfloat、tupleのみ対応
@ -1557,7 +1562,7 @@ def get_optimizer(args, trainable_params):
value = tuple(value)
optimizer_kwargs[key] = value
print("optkwargs:", optimizer_kwargs)
# print("optkwargs:", optimizer_kwargs)
lr = args.learning_rate
@ -1633,7 +1638,7 @@ def get_optimizer(args, trainable_params):
if optimizer_kwargs["relative_step"]:
print(f"relative_step is true / relative_stepがtrueです")
if lr != 0.0:
print(f"learning rate is used as initial_lr / 指定したlearning rate はinitial_lrとして使用されます: {lr}")
print(f"learning rate is used as initial_lr / 指定したlearning rateはinitial_lrとして使用されます")
args.learning_rate = None
# trainable_paramsがgroupだった時の処理lrを削除する

View File

@ -126,6 +126,11 @@ class LoRANetwork(torch.nn.Module):
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def set_multiplier(self, multiplier):
self.multiplier = multiplier
for lora in self.text_encoder_loras + self.unet_loras:
lora.multiplier = self.multiplier
def load_weights(self, file):
if os.path.splitext(file)[1] == '.safetensors':
from safetensors.torch import load_file, safe_open

View File

@ -14,6 +14,7 @@ altair==4.2.2
easygui==0.98.3
tk==0.1.0
lion-pytorch==0.0.6
dadaptation==1.5
# for BLIP captioning
requests==2.28.2
timm==0.6.12

24
tools/canny.py Normal file
View File

@ -0,0 +1,24 @@
import argparse
import cv2
def canny(args):
img = cv2.imread(args.input)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
canny_img = cv2.Canny(img, args.thres1, args.thres2)
# canny_img = 255 - canny_img
cv2.imwrite(args.output, canny_img)
print("done!")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--input", type=str, default=None, help="input path")
parser.add_argument("--output", type=str, default=None, help="output path")
parser.add_argument("--thres1", type=int, default=32, help="thres1")
parser.add_argument("--thres2", type=int, default=224, help="thres2")
args = parser.parse_args()
canny(args)

View File

@ -0,0 +1,320 @@
from typing import List, NamedTuple, Any
import numpy as np
import cv2
import torch
from safetensors.torch import load_file
from diffusers import UNet2DConditionModel
from diffusers.models.unet_2d_condition import UNet2DConditionOutput
import library.model_util as model_util
class ControlNetInfo(NamedTuple):
unet: Any
net: Any
prep: Any
weight: float
ratio: float
class ControlNet(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
# make control model
self.control_model = torch.nn.Module()
dims = [320, 320, 320, 320, 640, 640, 640, 1280, 1280, 1280, 1280, 1280]
zero_convs = torch.nn.ModuleList()
for i, dim in enumerate(dims):
sub_list = torch.nn.ModuleList([torch.nn.Conv2d(dim, dim, 1)])
zero_convs.append(sub_list)
self.control_model.add_module("zero_convs", zero_convs)
middle_block_out = torch.nn.Conv2d(1280, 1280, 1)
self.control_model.add_module("middle_block_out", torch.nn.ModuleList([middle_block_out]))
dims = [16, 16, 32, 32, 96, 96, 256, 320]
strides = [1, 1, 2, 1, 2, 1, 2, 1]
prev_dim = 3
input_hint_block = torch.nn.Sequential()
for i, (dim, stride) in enumerate(zip(dims, strides)):
input_hint_block.append(torch.nn.Conv2d(prev_dim, dim, 3, stride, 1))
if i < len(dims) - 1:
input_hint_block.append(torch.nn.SiLU())
prev_dim = dim
self.control_model.add_module("input_hint_block", input_hint_block)
def load_control_net(v2, unet, model):
device = unet.device
# control sdからキー変換しつつU-Netに対応する部分のみ取り出し、DiffusersのU-Netに読み込む
# state dictを読み込む
print(f"ControlNet: loading control SD model : {model}")
if model_util.is_safetensors(model):
ctrl_sd_sd = load_file(model)
else:
ctrl_sd_sd = torch.load(model, map_location='cpu')
ctrl_sd_sd = ctrl_sd_sd.pop("state_dict", ctrl_sd_sd)
# 重みをU-Netに読み込めるようにする。ControlNetはSD版のstate dictなので、それを読み込む
is_difference = "difference" in ctrl_sd_sd
print("ControlNet: loading difference")
# ControlNetには存在しないキーがあるので、まず現在のU-NetでSD版の全keyを作っておく
# またTransfer Controlの元weightとなる
ctrl_unet_sd_sd = model_util.convert_unet_state_dict_to_sd(v2, unet.state_dict())
# 元のU-Netに影響しないようにコピーする。またprefixが付いていないので付ける
for key in list(ctrl_unet_sd_sd.keys()):
ctrl_unet_sd_sd["model.diffusion_model." + key] = ctrl_unet_sd_sd.pop(key).clone()
zero_conv_sd = {}
for key in list(ctrl_sd_sd.keys()):
if key.startswith("control_"):
unet_key = "model.diffusion_" + key[len("control_"):]
if unet_key not in ctrl_unet_sd_sd: # zero conv
zero_conv_sd[key] = ctrl_sd_sd[key]
continue
if is_difference: # Transfer Control
ctrl_unet_sd_sd[unet_key] += ctrl_sd_sd[key].to(device, dtype=unet.dtype)
else:
ctrl_unet_sd_sd[unet_key] = ctrl_sd_sd[key].to(device, dtype=unet.dtype)
unet_config = model_util.create_unet_diffusers_config(v2)
ctrl_unet_du_sd = model_util.convert_ldm_unet_checkpoint(v2, ctrl_unet_sd_sd, unet_config) # DiffUsers版ControlNetのstate dict
# ControlNetのU-Netを作成する
ctrl_unet = UNet2DConditionModel(**unet_config)
info = ctrl_unet.load_state_dict(ctrl_unet_du_sd)
print("ControlNet: loading Control U-Net:", info)
# U-Net以外のControlNetを作成する
# TODO support middle only
ctrl_net = ControlNet()
info = ctrl_net.load_state_dict(zero_conv_sd)
print("ControlNet: loading ControlNet:", info)
ctrl_unet.to(unet.device, dtype=unet.dtype)
ctrl_net.to(unet.device, dtype=unet.dtype)
return ctrl_unet, ctrl_net
def load_preprocess(prep_type: str):
if prep_type is None or prep_type.lower() == "none":
return None
if prep_type.startswith("canny"):
args = prep_type.split("_")
th1 = int(args[1]) if len(args) >= 2 else 63
th2 = int(args[2]) if len(args) >= 3 else 191
def canny(img):
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
return cv2.Canny(img, th1, th2)
return canny
print("Unsupported prep type:", prep_type)
return None
def preprocess_ctrl_net_hint_image(image):
image = np.array(image).astype(np.float32) / 255.0
image = image[:, :, ::-1].copy() # rgb to bgr
image = image[None].transpose(0, 3, 1, 2) # nchw
image = torch.from_numpy(image)
return image # 0 to 1
def get_guided_hints(control_nets: List[ControlNetInfo], num_latent_input, b_size, hints):
guided_hints = []
for i, cnet_info in enumerate(control_nets):
# hintは 1枚目の画像のcnet1, 1枚目の画像のcnet2, 1枚目の画像のcnet3, 2枚目の画像のcnet1, 2枚目の画像のcnet2 ... と並んでいること
b_hints = []
if len(hints) == 1: # すべて同じ画像をhintとして使う
hint = hints[0]
if cnet_info.prep is not None:
hint = cnet_info.prep(hint)
hint = preprocess_ctrl_net_hint_image(hint)
b_hints = [hint for _ in range(b_size)]
else:
for bi in range(b_size):
hint = hints[(bi * len(control_nets) + i) % len(hints)]
if cnet_info.prep is not None:
hint = cnet_info.prep(hint)
hint = preprocess_ctrl_net_hint_image(hint)
b_hints.append(hint)
b_hints = torch.cat(b_hints, dim=0)
b_hints = b_hints.to(cnet_info.unet.device, dtype=cnet_info.unet.dtype)
guided_hint = cnet_info.net.control_model.input_hint_block(b_hints)
guided_hints.append(guided_hint)
return guided_hints
def call_unet_and_control_net(step, num_latent_input, original_unet, control_nets: List[ControlNetInfo], guided_hints, current_ratio, sample, timestep, encoder_hidden_states):
# ControlNet
# 複数のControlNetの場合は、出力をマージするのではなく交互に適用する
cnet_cnt = len(control_nets)
cnet_idx = step % cnet_cnt
cnet_info = control_nets[cnet_idx]
# print(current_ratio, cnet_info.prep, cnet_info.weight, cnet_info.ratio)
if cnet_info.ratio < current_ratio:
return original_unet(sample, timestep, encoder_hidden_states)
guided_hint = guided_hints[cnet_idx]
guided_hint = guided_hint.repeat((num_latent_input, 1, 1, 1))
outs = unet_forward(True, cnet_info.net, cnet_info.unet, guided_hint, None, sample, timestep, encoder_hidden_states)
outs = [o * cnet_info.weight for o in outs]
# U-Net
return unet_forward(False, cnet_info.net, original_unet, None, outs, sample, timestep, encoder_hidden_states)
"""
# これはmergeのバージョン
# ControlNet
cnet_outs_list = []
for i, cnet_info in enumerate(control_nets):
# print(current_ratio, cnet_info.prep, cnet_info.weight, cnet_info.ratio)
if cnet_info.ratio < current_ratio:
continue
guided_hint = guided_hints[i]
outs = unet_forward(True, cnet_info.net, cnet_info.unet, guided_hint, None, sample, timestep, encoder_hidden_states)
for i in range(len(outs)):
outs[i] *= cnet_info.weight
cnet_outs_list.append(outs)
count = len(cnet_outs_list)
if count == 0:
return original_unet(sample, timestep, encoder_hidden_states)
# sum of controlnets
for i in range(1, count):
cnet_outs_list[0] += cnet_outs_list[i]
# U-Net
return unet_forward(False, cnet_info.net, original_unet, None, cnet_outs_list[0], sample, timestep, encoder_hidden_states)
"""
def unet_forward(is_control_net, control_net: ControlNet, unet: UNet2DConditionModel, guided_hint, ctrl_outs, sample, timestep, encoder_hidden_states):
# copy from UNet2DConditionModel
default_overall_up_factor = 2**unet.num_upsamplers
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
print("Forward upsample size to force interpolation output size.")
forward_upsample_size = True
# 0. center input if necessary
if unet.config.center_input_sample:
sample = 2 * sample - 1.0
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = unet.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=unet.dtype)
emb = unet.time_embedding(t_emb)
outs = [] # output of ControlNet
zc_idx = 0
# 2. pre-process
sample = unet.conv_in(sample)
if is_control_net:
sample += guided_hint
outs.append(control_net.control_model.zero_convs[zc_idx][0](sample)) # , emb, encoder_hidden_states))
zc_idx += 1
# 3. down
down_block_res_samples = (sample,)
for downsample_block in unet.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
if is_control_net:
for rs in res_samples:
outs.append(control_net.control_model.zero_convs[zc_idx][0](rs)) # , emb, encoder_hidden_states))
zc_idx += 1
down_block_res_samples += res_samples
# 4. mid
sample = unet.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states)
if is_control_net:
outs.append(control_net.control_model.middle_block_out[0](sample))
return outs
if not is_control_net:
sample += ctrl_outs.pop()
# 5. up
for i, upsample_block in enumerate(unet.up_blocks):
is_final_block = i == len(unet.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
if not is_control_net and len(ctrl_outs) > 0:
res_samples = list(res_samples)
apply_ctrl_outs = ctrl_outs[-len(res_samples):]
ctrl_outs = ctrl_outs[:-len(res_samples)]
for j in range(len(res_samples)):
res_samples[j] = res_samples[j] + apply_ctrl_outs[j]
res_samples = tuple(res_samples)
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
upsample_size=upsample_size,
)
else:
sample = upsample_block(
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
)
# 6. post-process
sample = unet.conv_norm_out(sample)
sample = unet.conv_act(sample)
sample = unet.conv_out(sample)
return UNet2DConditionOutput(sample=sample)

View File

@ -36,8 +36,7 @@ def generate_step_logs(args: argparse.Namespace, current_loss, avr_loss, lr_sche
logs["lr/unet"] = float(lr_scheduler.get_last_lr()[-1]) # may be same to textencoder
if args.optimizer_type.lower() == "DAdaptation".lower(): # tracking d*lr value of unet.
logs["lr/d*lr-textencoder"] = lr_scheduler.optimizers[-1].param_groups[0]['d']*lr_scheduler.optimizers[-1].param_groups[0]['lr']
logs["lr/d*lr-unet"] = lr_scheduler.optimizers[-1].param_groups[1]['d']*lr_scheduler.optimizers[-1].param_groups[1]['lr']
logs["lr/d*lr"] = lr_scheduler.optimizers[-1].param_groups[0]['d']*lr_scheduler.optimizers[-1].param_groups[0]['lr']
return logs
@ -276,9 +275,11 @@ def train(args):
"ss_shuffle_caption": bool(args.shuffle_caption),
"ss_cache_latents": bool(args.cache_latents),
"ss_enable_bucket": bool(train_dataset.enable_bucket),
"ss_bucket_no_upscale": bool(train_dataset.bucket_no_upscale),
"ss_min_bucket_reso": train_dataset.min_bucket_reso,
"ss_max_bucket_reso": train_dataset.max_bucket_reso,
"ss_seed": args.seed,
"ss_lowram": args.lowram,
"ss_keep_tokens": args.keep_tokens,
"ss_noise_offset": args.noise_offset,
"ss_dataset_dirs": json.dumps(train_dataset.dataset_dirs_info),
@ -287,7 +288,13 @@ def train(args):
"ss_bucket_info": json.dumps(train_dataset.bucket_info),
"ss_training_comment": args.training_comment, # will not be updated after training
"ss_sd_scripts_commit_hash": train_util.get_git_revision_hash(),
"ss_optimizer": optimizer_name + (f"({optimizer_args})" if len(optimizer_args) > 0 else "")
"ss_optimizer": optimizer_name + (f"({optimizer_args})" if len(optimizer_args) > 0 else ""),
"ss_max_grad_norm": args.max_grad_norm,
"ss_caption_dropout_rate": args.caption_dropout_rate,
"ss_caption_dropout_every_n_epochs": args.caption_dropout_every_n_epochs,
"ss_caption_tag_dropout_rate": args.caption_tag_dropout_rate,
"ss_face_crop_aug_range": args.face_crop_aug_range,
"ss_prior_loss_weight": args.prior_loss_weight,
}
# uncomment if another network is added
@ -362,7 +369,7 @@ def train(args):
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Predict the noise residual
with autocast():
with accelerator.autocast():
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
if args.v_parameterization:
@ -423,6 +430,7 @@ def train(args):
def save_func():
ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, epoch + 1) + '.' + args.save_model_as
ckpt_file = os.path.join(args.output_dir, ckpt_name)
metadata["ss_training_finished_at"] = str(time.time())
print(f"saving checkpoint: {ckpt_file}")
unwrap_model(network).save_weights(ckpt_file, save_dtype, None if args.no_metadata else metadata)
@ -440,6 +448,7 @@ def train(args):
# end of epoch
metadata["ss_epoch"] = str(num_train_epochs)
metadata["ss_training_finished_at"] = str(time.time())
is_main_process = accelerator.is_main_process
if is_main_process: