Move functions to common_gui

Add model name support
This commit is contained in:
bmaltais 2023-01-09 11:48:57 -05:00
parent fdb4508a62
commit dc5afbb057
6 changed files with 605 additions and 811 deletions

View File

@ -101,6 +101,9 @@ Once you have created the LoRA network you can generate images via auto1111 by i
## Change history
* 2023/01/10 (v20.1):
- Add support for `--output_name` to trainers
- Refactor code for easier maintenance
* 2023/01/10 (v20.0):
- Update code base to match latest kohys_ss code upgrade in https://github.com/kohya-ss/sd-scripts
* 2023/01/09 (v19.4.3):

View File

@ -18,6 +18,8 @@ from library.common_gui import (
get_any_file_path,
get_saveasfile_path,
color_aug_changed,
save_inference_file,
set_pretrained_model_name_or_path_input,
)
from library.dreambooth_folder_creation_gui import (
gradio_dreambooth_folder_creation_tab,
@ -102,45 +104,6 @@ def save_configuration(
'save_as',
]
}
# variables = {
# 'pretrained_model_name_or_path': pretrained_model_name_or_path,
# 'v2': v2,
# 'v_parameterization': v_parameterization,
# 'logging_dir': logging_dir,
# 'train_data_dir': train_data_dir,
# 'reg_data_dir': reg_data_dir,
# 'output_dir': output_dir,
# 'max_resolution': max_resolution,
# 'learning_rate': learning_rate,
# 'lr_scheduler': lr_scheduler,
# 'lr_warmup': lr_warmup,
# 'train_batch_size': train_batch_size,
# 'epoch': epoch,
# 'save_every_n_epochs': save_every_n_epochs,
# 'mixed_precision': mixed_precision,
# 'save_precision': save_precision,
# 'seed': seed,
# 'num_cpu_threads_per_process': num_cpu_threads_per_process,
# 'cache_latent': cache_latent,
# 'caption_extention': caption_extention,
# 'enable_bucket': enable_bucket,
# 'gradient_checkpointing': gradient_checkpointing,
# 'full_fp16': full_fp16,
# 'no_token_padding': no_token_padding,
# 'stop_text_encoder_training': stop_text_encoder_training,
# 'use_8bit_adam': use_8bit_adam,
# 'xformers': xformers,
# 'save_model_as': save_model_as,
# 'shuffle_caption': shuffle_caption,
# 'save_state': save_state,
# 'resume': resume,
# 'prior_loss_weight': prior_loss_weight,
# 'color_aug': color_aug,
# 'flip_aug': flip_aug,
# 'clip_skip': clip_skip,
# 'vae': vae,
# 'output_name': output_name,
# }
# Save the data to the selected file
with open(file_path, 'w') as file:
@ -194,71 +157,24 @@ def open_configuration(
original_file_path = file_path
file_path = get_file_path(file_path)
# print(file_path)
if not file_path == '' and not file_path == None:
# load variables from JSON file
with open(file_path, 'r') as f:
my_data = json.load(f)
my_data_db = json.load(f)
print("Loading config...")
else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data = {}
my_data_db = {}
values = [file_path]
for key, value in parameters:
# Set the value in the dictionary to the corresponding value in `my_data`, or the default value if not found
if not key in ['file_path']:
values.append(my_data.get(key, value))
# print(values)
values.append(my_data_db.get(key, value))
return tuple(values)
# Return the values of the variables as a dictionary
# return (
# file_path,
# my_data.get(
# 'pretrained_model_name_or_path', pretrained_model_name_or_path
# ),
# my_data.get('v2', v2),
# my_data.get('v_parameterization', v_parameterization),
# my_data.get('logging_dir', logging_dir),
# my_data.get('train_data_dir', train_data_dir),
# my_data.get('reg_data_dir', reg_data_dir),
# my_data.get('output_dir', output_dir),
# my_data.get('max_resolution', max_resolution),
# my_data.get('learning_rate', learning_rate),
# my_data.get('lr_scheduler', lr_scheduler),
# my_data.get('lr_warmup', lr_warmup),
# my_data.get('train_batch_size', train_batch_size),
# my_data.get('epoch', epoch),
# my_data.get('save_every_n_epochs', save_every_n_epochs),
# my_data.get('mixed_precision', mixed_precision),
# my_data.get('save_precision', save_precision),
# my_data.get('seed', seed),
# my_data.get(
# 'num_cpu_threads_per_process', num_cpu_threads_per_process
# ),
# my_data.get('cache_latent', cache_latent),
# my_data.get('caption_extention', caption_extention),
# my_data.get('enable_bucket', enable_bucket),
# my_data.get('gradient_checkpointing', gradient_checkpointing),
# my_data.get('full_fp16', full_fp16),
# my_data.get('no_token_padding', no_token_padding),
# my_data.get('stop_text_encoder_training', stop_text_encoder_training),
# my_data.get('use_8bit_adam', use_8bit_adam),
# my_data.get('xformers', xformers),
# my_data.get('save_model_as', save_model_as),
# my_data.get('shuffle_caption', shuffle_caption),
# my_data.get('save_state', save_state),
# my_data.get('resume', resume),
# my_data.get('prior_loss_weight', prior_loss_weight),
# my_data.get('color_aug', color_aug),
# my_data.get('flip_aug', flip_aug),
# my_data.get('clip_skip', clip_skip),
# my_data.get('vae', vae),
# my_data.get('output_name', output_name),
# )
def train_model(
pretrained_model_name_or_path,
v2,
@ -298,29 +214,6 @@ def train_model(
vae,
output_name,
):
def save_inference_file(output_dir, v2, v_parameterization, output_name):
# List all files in the directory
files = os.listdir(output_dir)
# Iterate over the list of files
for file in files:
# Check if the file starts with the value of save_inference_file
if file.startswith(output_name):
# Copy the v2-inference-v.yaml file to the current file, with a .yaml extension
if v2 and v_parameterization:
print(f'Saving v2-inference-v.yaml as {output_dir}/{file}.yaml')
shutil.copy(
f'./v2_inference/v2-inference-v.yaml',
f'{output_dir}/{file}.yaml',
)
elif v2:
print(f'Saving v2-inference.yaml as {output_dir}/{file}.yaml')
shutil.copy(
f'./v2_inference/v2-inference.yaml',
f'{output_dir}/{file}.yaml',
)
if pretrained_model_name_or_path == '':
msgbox('Source model information is missing')
return
@ -487,57 +380,6 @@ def train_model(
save_inference_file(output_dir, v2, v_parameterization, output_name)
def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
# define a list of substrings to search for
substrings_v2 = [
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
if str(value) in substrings_v2:
print('SD v2 model detected. Setting --v2 parameter')
v2 = True
v_parameterization = False
return value, v2, v_parameterization
# define a list of substrings to search for v-objective
substrings_v_parameterization = [
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
if str(value) in substrings_v_parameterization:
print(
'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization'
)
v2 = True
v_parameterization = True
return value, v2, v_parameterization
# define a list of substrings to v1.x
substrings_v1_model = [
'CompVis/stable-diffusion-v1-4',
'runwayml/stable-diffusion-v1-5',
]
if str(value) in substrings_v1_model:
v2 = False
v_parameterization = False
return value, v2, v_parameterization
if value == 'custom':
value = ''
v2 = False
v_parameterization = False
return value, v2, v_parameterization
def UI(username, password):
css = ''
@ -593,11 +435,6 @@ def dreambooth_tab(
placeholder="type the configuration file path or use the 'Open' button above to select it...",
interactive=True,
)
# config_file_name.change(
# remove_doublequote,
# inputs=[config_file_name],
# outputs=[config_file_name],
# )
with gr.Tab('Source model'):
# Define the input elements
with gr.Row():

View File

@ -16,321 +16,456 @@ import library.train_util as train_util
def collate_fn(examples):
return examples[0]
return examples[0]
def train(args):
train_util.verify_training_args(args)
train_util.prepare_dataset_args(args, True)
train_util.verify_training_args(args)
train_util.prepare_dataset_args(args, True)
cache_latents = args.cache_latents
cache_latents = args.cache_latents
if args.seed is not None:
set_seed(args.seed) # 乱数系列を初期化する
if args.seed is not None:
set_seed(args.seed) # 乱数系列を初期化する
tokenizer = train_util.load_tokenizer(args)
tokenizer = train_util.load_tokenizer(args)
train_dataset = train_util.FineTuningDataset(args.in_json, args.train_batch_size, args.train_data_dir,
tokenizer, args.max_token_length, args.shuffle_caption, args.keep_tokens,
args.resolution, args.enable_bucket, args.min_bucket_reso, args.max_bucket_reso,
args.flip_aug, args.color_aug, args.face_crop_aug_range, args.random_crop,
args.dataset_repeats, args.debug_dataset)
train_dataset.make_buckets()
train_dataset = train_util.FineTuningDataset(
args.in_json,
args.train_batch_size,
args.train_data_dir,
tokenizer,
args.max_token_length,
args.shuffle_caption,
args.keep_tokens,
args.resolution,
args.enable_bucket,
args.min_bucket_reso,
args.max_bucket_reso,
args.flip_aug,
args.color_aug,
args.face_crop_aug_range,
args.random_crop,
args.dataset_repeats,
args.debug_dataset,
)
train_dataset.make_buckets()
if args.debug_dataset:
train_util.debug_dataset(train_dataset)
return
if len(train_dataset) == 0:
print("No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。")
return
if args.debug_dataset:
train_util.debug_dataset(train_dataset)
return
if len(train_dataset) == 0:
print(
'No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。'
)
return
# acceleratorを準備する
print("prepare accelerator")
accelerator, unwrap_model = train_util.prepare_accelerator(args)
# acceleratorを準備する
print('prepare accelerator')
accelerator, unwrap_model = train_util.prepare_accelerator(args)
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, save_dtype = train_util.prepare_dtype(args)
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, save_dtype = train_util.prepare_dtype(args)
# モデルを読み込む
text_encoder, vae, unet, load_stable_diffusion_format = train_util.load_target_model(args, weight_dtype)
# モデルを読み込む
(
text_encoder,
vae,
unet,
load_stable_diffusion_format,
) = train_util.load_target_model(args, weight_dtype)
# verify load/save model formats
if load_stable_diffusion_format:
src_stable_diffusion_ckpt = args.pretrained_model_name_or_path
src_diffusers_model_path = None
else:
src_stable_diffusion_ckpt = None
src_diffusers_model_path = args.pretrained_model_name_or_path
if args.save_model_as is None:
save_stable_diffusion_format = load_stable_diffusion_format
use_safetensors = args.use_safetensors
else:
save_stable_diffusion_format = args.save_model_as.lower() == 'ckpt' or args.save_model_as.lower() == 'safetensors'
use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower())
# Diffusers版のxformers使用フラグを設定する関数
def set_diffusers_xformers_flag(model, valid):
# model.set_use_memory_efficient_attention_xformers(valid) # 次のリリースでなくなりそう
# pipeが自動で再帰的にset_use_memory_efficient_attention_xformersを探すんだって(;´Д`)
# U-Netだけ使う時にはどうすればいいのか……仕方ないからコピって使うか
# 0.10.2でなんか巻き戻って個別に指定するようになった(;^ω^)
# Recursively walk through all the children.
# Any children which exposes the set_use_memory_efficient_attention_xformers method
# gets the message
def fn_recursive_set_mem_eff(module: torch.nn.Module):
if hasattr(module, "set_use_memory_efficient_attention_xformers"):
module.set_use_memory_efficient_attention_xformers(valid)
for child in module.children():
fn_recursive_set_mem_eff(child)
fn_recursive_set_mem_eff(model)
# モデルに xformers とか memory efficient attention を組み込む
if args.diffusers_xformers:
print("Use xformers by Diffusers")
set_diffusers_xformers_flag(unet, True)
else:
# Windows版のxformersはfloatで学習できないのでxformersを使わない設定も可能にしておく必要がある
print("Disable Diffusers' xformers")
set_diffusers_xformers_flag(unet, False)
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
# 学習を準備する
if cache_latents:
vae.to(accelerator.device, dtype=weight_dtype)
vae.requires_grad_(False)
vae.eval()
with torch.no_grad():
train_dataset.cache_latents(vae)
vae.to("cpu")
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# 学習を準備する:モデルを適切な状態にする
training_models = []
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
training_models.append(unet)
if args.train_text_encoder:
print("enable text encoder training")
if args.gradient_checkpointing:
text_encoder.gradient_checkpointing_enable()
training_models.append(text_encoder)
else:
text_encoder.to(accelerator.device, dtype=weight_dtype)
text_encoder.requires_grad_(False) # text encoderは学習しない
if args.gradient_checkpointing:
text_encoder.gradient_checkpointing_enable()
text_encoder.train() # required for gradient_checkpointing
# verify load/save model formats
if load_stable_diffusion_format:
src_stable_diffusion_ckpt = args.pretrained_model_name_or_path
src_diffusers_model_path = None
else:
text_encoder.eval()
src_stable_diffusion_ckpt = None
src_diffusers_model_path = args.pretrained_model_name_or_path
if not cache_latents:
vae.requires_grad_(False)
vae.eval()
vae.to(accelerator.device, dtype=weight_dtype)
if args.save_model_as is None:
save_stable_diffusion_format = load_stable_diffusion_format
use_safetensors = args.use_safetensors
else:
save_stable_diffusion_format = (
args.save_model_as.lower() == 'ckpt'
or args.save_model_as.lower() == 'safetensors'
)
use_safetensors = args.use_safetensors or (
'safetensors' in args.save_model_as.lower()
)
for m in training_models:
m.requires_grad_(True)
params = []
for m in training_models:
params.extend(m.parameters())
params_to_optimize = params
# Diffusers版のxformers使用フラグを設定する関数
def set_diffusers_xformers_flag(model, valid):
# model.set_use_memory_efficient_attention_xformers(valid) # 次のリリースでなくなりそう
# pipeが自動で再帰的にset_use_memory_efficient_attention_xformersを探すんだって(;´Д`)
# U-Netだけ使う時にはどうすればいいのか……仕方ないからコピって使うか
# 0.10.2でなんか巻き戻って個別に指定するようになった(;^ω^)
# 学習に必要なクラスを準備する
print("prepare optimizer, data loader etc.")
# Recursively walk through all the children.
# Any children which exposes the set_use_memory_efficient_attention_xformers method
# gets the message
def fn_recursive_set_mem_eff(module: torch.nn.Module):
if hasattr(module, 'set_use_memory_efficient_attention_xformers'):
module.set_use_memory_efficient_attention_xformers(valid)
# 8-bit Adamを使う
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです")
print("use 8-bit Adam optimizer")
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
for child in module.children():
fn_recursive_set_mem_eff(child)
# betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略
optimizer = optimizer_class(params_to_optimize, lr=args.learning_rate)
fn_recursive_set_mem_eff(model)
# dataloaderを準備する
# DataLoaderのプロセス数0はメインプロセスになる
n_workers = min(8, os.cpu_count() - 1) # cpu_count-1 ただし最大8
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=1, shuffle=False, collate_fn=collate_fn, num_workers=n_workers)
# モデルに xformers とか memory efficient attention を組み込む
if args.diffusers_xformers:
print('Use xformers by Diffusers')
set_diffusers_xformers_flag(unet, True)
else:
# Windows版のxformersはfloatで学習できないのでxformersを使わない設定も可能にしておく必要がある
print("Disable Diffusers' xformers")
set_diffusers_xformers_flag(unet, False)
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
# lr schedulerを用意する
lr_scheduler = diffusers.optimization.get_scheduler(
args.lr_scheduler, optimizer, num_warmup_steps=args.lr_warmup_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps)
# 実験的機能勾配も含めたfp16学習を行う モデル全体をfp16にする
if args.full_fp16:
assert args.mixed_precision == "fp16", "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
print("enable full fp16 training.")
unet.to(weight_dtype)
text_encoder.to(weight_dtype)
# acceleratorがなんかよろしくやってくれるらしい
if args.train_text_encoder:
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, text_encoder, optimizer, train_dataloader, lr_scheduler)
else:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler)
# 実験的機能勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
if args.full_fp16:
train_util.patch_accelerator_for_fp16_training(accelerator)
# resumeする
if args.resume is not None:
print(f"resume training from state: {args.resume}")
accelerator.load_state(args.resume)
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# 学習する
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
print("running training / 学習開始")
print(f" num examples / サンプル数: {train_dataset.num_train_images}")
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
print(f" num epochs / epoch数: {num_train_epochs}")
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
global_step = 0
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
num_train_timesteps=1000, clip_sample=False)
if accelerator.is_main_process:
accelerator.init_trackers("finetuning")
for epoch in range(num_train_epochs):
print(f"epoch {epoch+1}/{num_train_epochs}")
for m in training_models:
m.train()
loss_total = 0
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(training_models[0]): # 複数モデルに対応していない模様だがとりあえずこうしておく
# 学習を準備する
if cache_latents:
vae.to(accelerator.device, dtype=weight_dtype)
vae.requires_grad_(False)
vae.eval()
with torch.no_grad():
if "latents" in batch and batch["latents"] is not None:
latents = batch["latents"].to(accelerator.device)
else:
# latentに変換
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
b_size = latents.shape[0]
train_dataset.cache_latents(vae)
vae.to('cpu')
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
with torch.set_grad_enabled(args.train_text_encoder):
# Get the text embedding for conditioning
input_ids = batch["input_ids"].to(accelerator.device)
encoder_hidden_states = train_util.get_hidden_states(
args, input_ids, tokenizer, text_encoder, None if not args.full_fp16 else weight_dtype)
# 学習を準備する:モデルを適切な状態にする
training_models = []
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
training_models.append(unet)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents, device=latents.device)
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Predict the noise residual
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
if args.v_parameterization:
# v-parameterization training
target = noise_scheduler.get_velocity(latents, noise, timesteps)
if args.train_text_encoder:
print('enable text encoder training')
if args.gradient_checkpointing:
text_encoder.gradient_checkpointing_enable()
training_models.append(text_encoder)
else:
text_encoder.to(accelerator.device, dtype=weight_dtype)
text_encoder.requires_grad_(False) # text encoderは学習しない
if args.gradient_checkpointing:
text_encoder.gradient_checkpointing_enable()
text_encoder.train() # required for gradient_checkpointing
else:
target = noise
text_encoder.eval()
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="mean")
if not cache_latents:
vae.requires_grad_(False)
vae.eval()
vae.to(accelerator.device, dtype=weight_dtype)
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = []
for m in training_models:
params_to_clip.extend(m.parameters())
accelerator.clip_grad_norm_(params_to_clip, 1.0) # args.max_grad_norm)
for m in training_models:
m.requires_grad_(True)
params = []
for m in training_models:
params.extend(m.parameters())
params_to_optimize = params
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# 学習に必要なクラスを準備する
print('prepare optimizer, data loader etc.')
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
# 8-bit Adamを使う
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
'No bitsand bytes / bitsandbytesがインストールされていないようです'
)
print('use 8-bit Adam optimizer')
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず
if args.logging_dir is not None:
logs = {"loss": current_loss, "lr": lr_scheduler.get_last_lr()[0]}
accelerator.log(logs, step=global_step)
# betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略
optimizer = optimizer_class(params_to_optimize, lr=args.learning_rate)
loss_total += current_loss
avr_loss = loss_total / (step+1)
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
# dataloaderを準備する
# DataLoaderのプロセス数0はメインプロセスになる
n_workers = min(8, os.cpu_count() - 1) # cpu_count-1 ただし最大8
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=1,
shuffle=False,
collate_fn=collate_fn,
num_workers=n_workers,
)
if global_step >= args.max_train_steps:
break
# lr schedulerを用意する
lr_scheduler = diffusers.optimization.get_scheduler(
args.lr_scheduler,
optimizer,
num_warmup_steps=args.lr_warmup_steps,
num_training_steps=args.max_train_steps
* args.gradient_accumulation_steps,
)
if args.logging_dir is not None:
logs = {"epoch_loss": loss_total / len(train_dataloader)}
accelerator.log(logs, step=epoch+1)
# 実験的機能勾配も含めたfp16学習を行う モデル全体をfp16にする
if args.full_fp16:
assert (
args.mixed_precision == 'fp16'
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
print('enable full fp16 training.')
unet.to(weight_dtype)
text_encoder.to(weight_dtype)
accelerator.wait_for_everyone()
# acceleratorがなんかよろしくやってくれるらしい
if args.train_text_encoder:
(
unet,
text_encoder,
optimizer,
train_dataloader,
lr_scheduler,
) = accelerator.prepare(
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
)
else:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
if args.save_every_n_epochs is not None:
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
train_util.save_sd_model_on_epoch_end(args, accelerator, src_path, save_stable_diffusion_format, use_safetensors,
save_dtype, epoch, num_train_epochs, global_step, unwrap_model(text_encoder), unwrap_model(unet), vae)
# 実験的機能勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
if args.full_fp16:
train_util.patch_accelerator_for_fp16_training(accelerator)
is_main_process = accelerator.is_main_process
if is_main_process:
unet = unwrap_model(unet)
text_encoder = unwrap_model(text_encoder)
# resumeする
if args.resume is not None:
print(f'resume training from state: {args.resume}')
accelerator.load_state(args.resume)
accelerator.end_training()
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.gradient_accumulation_steps
)
num_train_epochs = math.ceil(
args.max_train_steps / num_update_steps_per_epoch
)
if args.save_state:
train_util.save_state_on_train_end(args, accelerator)
# 学習する
total_batch_size = (
args.train_batch_size
* accelerator.num_processes
* args.gradient_accumulation_steps
)
print('running training / 学習開始')
print(f' num examples / サンプル数: {train_dataset.num_train_images}')
print(f' num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}')
print(f' num epochs / epoch数: {num_train_epochs}')
print(f' batch size per device / バッチサイズ: {args.train_batch_size}')
print(
f' total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}'
)
print(
f' gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}'
)
print(f' total optimization steps / 学習ステップ数: {args.max_train_steps}')
del accelerator # この後メモリを使うのでこれは消す
progress_bar = tqdm(
range(args.max_train_steps),
smoothing=0,
disable=not accelerator.is_local_main_process,
desc='steps',
)
global_step = 0
if is_main_process:
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
train_util.save_sd_model_on_train_end(args, src_path, save_stable_diffusion_format, use_safetensors,
save_dtype, epoch, global_step, text_encoder, unet, vae)
print("model saved.")
noise_scheduler = DDPMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule='scaled_linear',
num_train_timesteps=1000,
clip_sample=False,
)
if accelerator.is_main_process:
accelerator.init_trackers('finetuning')
for epoch in range(num_train_epochs):
print(f'epoch {epoch+1}/{num_train_epochs}')
for m in training_models:
m.train()
loss_total = 0
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(
training_models[0]
): # 複数モデルに対応していない模様だがとりあえずこうしておく
with torch.no_grad():
if 'latents' in batch and batch['latents'] is not None:
latents = batch['latents'].to(accelerator.device)
else:
# latentに変換
latents = vae.encode(
batch['images'].to(dtype=weight_dtype)
).latent_dist.sample()
latents = latents * 0.18215
b_size = latents.shape[0]
with torch.set_grad_enabled(args.train_text_encoder):
# Get the text embedding for conditioning
input_ids = batch['input_ids'].to(accelerator.device)
encoder_hidden_states = train_util.get_hidden_states(
args,
input_ids,
tokenizer,
text_encoder,
None if not args.full_fp16 else weight_dtype,
)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents, device=latents.device)
# Sample a random timestep for each image
timesteps = torch.randint(
0,
noise_scheduler.config.num_train_timesteps,
(b_size,),
device=latents.device,
)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(
latents, noise, timesteps
)
# Predict the noise residual
noise_pred = unet(
noisy_latents, timesteps, encoder_hidden_states
).sample
if args.v_parameterization:
# v-parameterization training
target = noise_scheduler.get_velocity(
latents, noise, timesteps
)
else:
target = noise
loss = torch.nn.functional.mse_loss(
noise_pred.float(), target.float(), reduction='mean'
)
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = []
for m in training_models:
params_to_clip.extend(m.parameters())
accelerator.clip_grad_norm_(
params_to_clip, 1.0
) # args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず
if args.logging_dir is not None:
logs = {
'loss': current_loss,
'lr': lr_scheduler.get_last_lr()[0],
}
accelerator.log(logs, step=global_step)
loss_total += current_loss
avr_loss = loss_total / (step + 1)
logs = {'loss': avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= args.max_train_steps:
break
if args.logging_dir is not None:
logs = {'epoch_loss': loss_total / len(train_dataloader)}
accelerator.log(logs, step=epoch + 1)
accelerator.wait_for_everyone()
if args.save_every_n_epochs is not None:
src_path = (
src_stable_diffusion_ckpt
if save_stable_diffusion_format
else src_diffusers_model_path
)
train_util.save_sd_model_on_epoch_end(
args,
accelerator,
src_path,
save_stable_diffusion_format,
use_safetensors,
save_dtype,
epoch,
num_train_epochs,
global_step,
unwrap_model(text_encoder),
unwrap_model(unet),
vae,
)
is_main_process = accelerator.is_main_process
if is_main_process:
unet = unwrap_model(unet)
text_encoder = unwrap_model(text_encoder)
accelerator.end_training()
if args.save_state:
train_util.save_state_on_train_end(args, accelerator)
del accelerator # この後メモリを使うのでこれは消す
if is_main_process:
src_path = (
src_stable_diffusion_ckpt
if save_stable_diffusion_format
else src_diffusers_model_path
)
train_util.save_sd_model_on_train_end(
args,
src_path,
save_stable_diffusion_format,
use_safetensors,
save_dtype,
epoch,
global_step,
text_encoder,
unet,
vae,
)
print('model saved.')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser = argparse.ArgumentParser()
train_util.add_sd_models_arguments(parser)
train_util.add_dataset_arguments(parser, False, True)
train_util.add_training_arguments(parser, False)
train_util.add_sd_saving_arguments(parser)
train_util.add_sd_models_arguments(parser)
train_util.add_dataset_arguments(parser, False, True)
train_util.add_training_arguments(parser, False)
train_util.add_sd_saving_arguments(parser)
parser.add_argument("--diffusers_xformers", action='store_true',
help='use xformers by diffusers / Diffusersでxformersを使用する')
parser.add_argument("--train_text_encoder", action="store_true", help="train text encoder / text encoderも学習する")
parser.add_argument(
'--diffusers_xformers',
action='store_true',
help='use xformers by diffusers / Diffusersでxformersを使用する',
)
parser.add_argument(
'--train_text_encoder',
action='store_true',
help='train text encoder / text encoderも学習する',
)
args = parser.parse_args()
train(args)
args = parser.parse_args()
train(args)

View File

@ -11,6 +11,8 @@ from library.common_gui import (
get_file_path,
get_any_file_path,
get_saveasfile_path,
save_inference_file,
set_pretrained_model_name_or_path_input,
)
from library.utilities import utilities_tab
@ -63,7 +65,11 @@ def save_configuration(
gradient_accumulation_steps,
mem_eff_attn,
shuffle_caption,
output_name,
):
# Get list of function parameters and values
parameters = list(locals().items())
original_file_path = file_path
save_as_bool = True if save_as.get('label') == 'True' else False
@ -83,51 +89,18 @@ def save_configuration(
# Return the values of the variables as a dictionary
variables = {
'pretrained_model_name_or_path': pretrained_model_name_or_path,
'v2': v2,
'v_parameterization': v_parameterization,
'train_dir': train_dir,
'image_folder': image_folder,
'output_dir': output_dir,
'logging_dir': logging_dir,
'max_resolution': max_resolution,
'min_bucket_reso': min_bucket_reso,
'max_bucket_reso': max_bucket_reso,
'batch_size': batch_size,
'flip_aug': flip_aug,
'caption_metadata_filename': caption_metadata_filename,
'latent_metadata_filename': latent_metadata_filename,
'full_path': full_path,
'learning_rate': learning_rate,
'lr_scheduler': lr_scheduler,
'lr_warmup': lr_warmup,
'dataset_repeats': dataset_repeats,
'train_batch_size': train_batch_size,
'epoch': epoch,
'save_every_n_epochs': save_every_n_epochs,
'mixed_precision': mixed_precision,
'save_precision': save_precision,
'seed': seed,
'num_cpu_threads_per_process': num_cpu_threads_per_process,
'train_text_encoder': train_text_encoder,
'create_buckets': create_buckets,
'create_caption': create_caption,
'save_model_as': save_model_as,
'caption_extension': caption_extension,
'use_8bit_adam': use_8bit_adam,
'xformers': xformers,
'clip_skip': clip_skip,
'save_state': save_state,
'resume': resume,
'gradient_checkpointing': gradient_checkpointing,
'gradient_accumulation_steps': gradient_accumulation_steps,
'mem_eff_attn': mem_eff_attn,
'shuffle_caption': shuffle_caption,
name: value
for name, value in parameters # locals().items()
if name
not in [
'file_path',
'save_as',
]
}
# Save the data to the selected file
with open(file_path, 'w') as file:
json.dump(variables, file)
json.dump(variables, file, indent=2)
return file_path
@ -174,7 +147,11 @@ def open_config_file(
gradient_accumulation_steps,
mem_eff_attn,
shuffle_caption,
output_name,
):
# Get list of function parameters and values
parameters = list(locals().items())
original_file_path = file_path
file_path = get_file_path(file_path)
@ -182,59 +159,18 @@ def open_config_file(
print(f'Loading config file {file_path}')
# load variables from JSON file
with open(file_path, 'r') as f:
my_data = json.load(f)
my_data_ft = json.load(f)
else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data = {}
# Return the values of the variables as a dictionary
return (
file_path,
my_data.get(
'pretrained_model_name_or_path', pretrained_model_name_or_path
),
my_data.get('v2', v2),
my_data.get('v_parameterization', v_parameterization),
my_data.get('train_dir', train_dir),
my_data.get('image_folder', image_folder),
my_data.get('output_dir', output_dir),
my_data.get('logging_dir', logging_dir),
my_data.get('max_resolution', max_resolution),
my_data.get('min_bucket_reso', min_bucket_reso),
my_data.get('max_bucket_reso', max_bucket_reso),
my_data.get('batch_size', batch_size),
my_data.get('flip_aug', flip_aug),
my_data.get('caption_metadata_filename', caption_metadata_filename),
my_data.get('latent_metadata_filename', latent_metadata_filename),
my_data.get('full_path', full_path),
my_data.get('learning_rate', learning_rate),
my_data.get('lr_scheduler', lr_scheduler),
my_data.get('lr_warmup', lr_warmup),
my_data.get('dataset_repeats', dataset_repeats),
my_data.get('train_batch_size', train_batch_size),
my_data.get('epoch', epoch),
my_data.get('save_every_n_epochs', save_every_n_epochs),
my_data.get('mixed_precision', mixed_precision),
my_data.get('save_precision', save_precision),
my_data.get('seed', seed),
my_data.get(
'num_cpu_threads_per_process', num_cpu_threads_per_process
),
my_data.get('train_text_encoder', train_text_encoder),
my_data.get('create_buckets', create_buckets),
my_data.get('create_caption', create_caption),
my_data.get('save_model_as', save_model_as),
my_data.get('caption_extension', caption_extension),
my_data.get('use_8bit_adam', use_8bit_adam),
my_data.get('xformers', xformers),
my_data.get('clip_skip', clip_skip),
my_data.get('save_state', save_state),
my_data.get('resume', resume),
my_data.get('gradient_checkpointing', gradient_checkpointing),
my_data.get('gradient_accumulation_steps', gradient_accumulation_steps),
my_data.get('mem_eff_attn', mem_eff_attn),
my_data.get('shuffle_caption', shuffle_caption),
)
my_data_ft = {}
values = [file_path]
for key, value in parameters:
# Set the value in the dictionary to the corresponding value in `my_data_ft`, or the default value if not found
if not key in ['file_path']:
values.append(my_data_ft.get(key, value))
# print(values)
return tuple(values)
def train_model(
@ -278,22 +214,8 @@ def train_model(
gradient_accumulation_steps,
mem_eff_attn,
shuffle_caption,
output_name,
):
def save_inference_file(output_dir, v2, v_parameterization):
# Copy inference model for v2 if required
if v2 and v_parameterization:
print(f'Saving v2-inference-v.yaml as {output_dir}/last.yaml')
shutil.copy(
f'./v2_inference/v2-inference-v.yaml',
f'{output_dir}/last.yaml',
)
elif v2:
print(f'Saving v2-inference.yaml as {output_dir}/last.yaml')
shutil.copy(
f'./v2_inference/v2-inference.yaml',
f'{output_dir}/last.yaml',
)
# create caption json file
if generate_caption_database:
if not os.path.exists(train_dir):
@ -407,68 +329,19 @@ def train_model(
run_cmd += ' --save_state'
if not resume == '':
run_cmd += f' --resume={resume}'
if not output_name == '':
run_cmd += f' --output_name="{output_name}"'
print(run_cmd)
# Run the command
subprocess.run(run_cmd)
# check if output_dir/last is a folder... therefore it is a diffuser model
last_dir = pathlib.Path(f'{output_dir}/last')
last_dir = pathlib.Path(f'{output_dir}/{output_name}')
if not last_dir.is_dir():
# Copy inference model for v2 if required
save_inference_file(output_dir, v2, v_parameterization)
def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
# define a list of substrings to search for
substrings_v2 = [
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
if str(value) in substrings_v2:
print('SD v2 model detected. Setting --v2 parameter')
v2 = True
v_parameterization = False
return value, v2, v_parameterization
# define a list of substrings to search for v-objective
substrings_v_parameterization = [
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
if str(value) in substrings_v_parameterization:
print(
'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization'
)
v2 = True
v_parameterization = True
return value, v2, v_parameterization
# define a list of substrings to v1.x
substrings_v1_model = [
'CompVis/stable-diffusion-v1-4',
'runwayml/stable-diffusion-v1-5',
]
if str(value) in substrings_v1_model:
v2 = False
v_parameterization = False
return value, v2, v_parameterization
if value == 'custom':
value = ''
v2 = False
v_parameterization = False
return value, v2, v_parameterization
save_inference_file(output_dir, v2, v_parameterization, output_name)
def remove_doublequote(file_path):
@ -610,7 +483,7 @@ def finetune_tab():
)
with gr.Row():
output_dir_input = gr.Textbox(
label='Output folder',
label='Model output folder',
placeholder='folder where the model will be saved',
)
output_dir_input_folder = gr.Button(
@ -630,6 +503,13 @@ def finetune_tab():
logging_dir_input_folder.click(
get_folder_path, outputs=logging_dir_input
)
with gr.Row():
output_name = gr.Textbox(
label='Model output name',
placeholder='Name of the model to output',
value='last',
interactive=True,
)
train_dir_input.change(
remove_doublequote,
inputs=[train_dir_input],
@ -814,6 +694,7 @@ def finetune_tab():
gradient_accumulation_steps,
mem_eff_attn,
shuffle_caption,
output_name,
]
button_run.click(train_model, inputs=settings_list)

View File

@ -2,6 +2,7 @@ from tkinter import filedialog, Tk
import os
import gradio as gr
from easygui import msgbox
import shutil
def get_dir_and_file(file_path):
dir_path, file_name = os.path.split(file_path)
@ -183,4 +184,81 @@ def color_aug_changed(color_aug):
msgbox('Disabling "Cache latent" because "Color augmentation" has been selected...')
return gr.Checkbox.update(value=False, interactive=False)
else:
return gr.Checkbox.update(value=True, interactive=True)
return gr.Checkbox.update(value=True, interactive=True)
def save_inference_file(output_dir, v2, v_parameterization, output_name):
# List all files in the directory
files = os.listdir(output_dir)
# Iterate over the list of files
for file in files:
# Check if the file starts with the value of output_name
if file.startswith(output_name):
# Check if it is a file or a directory
if os.path.isfile(os.path.join(output_dir, file)):
# Split the file name and extension
file_name, ext = os.path.splitext(file)
# Copy the v2-inference-v.yaml file to the current file, with a .yaml extension
if v2 and v_parameterization:
print(f'Saving v2-inference-v.yaml as {output_dir}/{file_name}.yaml')
shutil.copy(
f'./v2_inference/v2-inference-v.yaml',
f'{output_dir}/{file_name}.yaml',
)
elif v2:
print(f'Saving v2-inference.yaml as {output_dir}/{file_name}.yaml')
shutil.copy(
f'./v2_inference/v2-inference.yaml',
f'{output_dir}/{file_name}.yaml',
)
def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
# define a list of substrings to search for
substrings_v2 = [
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
if str(value) in substrings_v2:
print('SD v2 model detected. Setting --v2 parameter')
v2 = True
v_parameterization = False
return value, v2, v_parameterization
# define a list of substrings to search for v-objective
substrings_v_parameterization = [
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
if str(value) in substrings_v_parameterization:
print(
'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization'
)
v2 = True
v_parameterization = True
return value, v2, v_parameterization
# define a list of substrings to v1.x
substrings_v1_model = [
'CompVis/stable-diffusion-v1-4',
'runwayml/stable-diffusion-v1-5',
]
if str(value) in substrings_v1_model:
v2 = False
v_parameterization = False
return value, v2, v_parameterization
if value == 'custom':
value = ''
v2 = False
v_parameterization = False
return value, v2, v_parameterization

View File

@ -18,6 +18,8 @@ from library.common_gui import (
get_any_file_path,
get_saveasfile_path,
color_aug_changed,
save_inference_file,
set_pretrained_model_name_or_path_input,
)
from library.dreambooth_folder_creation_gui import (
gradio_dreambooth_folder_creation_tab,
@ -76,8 +78,11 @@ def save_configuration(
clip_skip,
gradient_accumulation_steps,
mem_eff_attn,
# vae,
output_name,
):
# Get list of function parameters and values
parameters = list(locals().items())
original_file_path = file_path
save_as_bool = True if save_as.get('label') == 'True' else False
@ -97,85 +102,51 @@ def save_configuration(
# Return the values of the variables as a dictionary
variables = {
'pretrained_model_name_or_path': pretrained_model_name_or_path,
'v2': v2,
'v_parameterization': v_parameterization,
'logging_dir': logging_dir,
'train_data_dir': train_data_dir,
'reg_data_dir': reg_data_dir,
'output_dir': output_dir,
'max_resolution': max_resolution,
'lr_scheduler': lr_scheduler,
'lr_warmup': lr_warmup,
'train_batch_size': train_batch_size,
'epoch': epoch,
'save_every_n_epochs': save_every_n_epochs,
'mixed_precision': mixed_precision,
'save_precision': save_precision,
'seed': seed,
'num_cpu_threads_per_process': num_cpu_threads_per_process,
'cache_latent': cache_latent,
'caption_extention': caption_extention,
'enable_bucket': enable_bucket,
'gradient_checkpointing': gradient_checkpointing,
'full_fp16': full_fp16,
'no_token_padding': no_token_padding,
'stop_text_encoder_training': stop_text_encoder_training,
'use_8bit_adam': use_8bit_adam,
'xformers': xformers,
'save_model_as': save_model_as,
'shuffle_caption': shuffle_caption,
'save_state': save_state,
'resume': resume,
'prior_loss_weight': prior_loss_weight,
'text_encoder_lr': text_encoder_lr,
'unet_lr': unet_lr,
'network_dim': network_dim,
'lora_network_weights': lora_network_weights,
'color_aug': color_aug,
'flip_aug': flip_aug,
'clip_skip': clip_skip,
'gradient_accumulation_steps': gradient_accumulation_steps,
'mem_eff_attn': mem_eff_attn,
# 'vae': vae,
name: value
for name, value in parameters # locals().items()
if name
not in [
'file_path',
'save_as',
]
}
# Save the data to the selected file
with open(file_path, 'w') as file:
json.dump(variables, file)
json.dump(variables, file, indent=2)
return file_path
def open_configuration(
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latent,
caption_extention,
enable_bucket,
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
logging_dir_input,
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
max_resolution_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
cache_latent_input,
caption_extention_input,
enable_bucket_input,
gradient_checkpointing,
full_fp16,
no_token_padding,
stop_text_encoder_training,
use_8bit_adam,
xformers,
save_model_as,
full_fp16_input,
no_token_padding_input,
stop_text_encoder_training_input,
use_8bit_adam_input,
xformers_input,
save_model_as_dropdown,
shuffle_caption,
save_state,
resume,
@ -189,70 +160,29 @@ def open_configuration(
clip_skip,
gradient_accumulation_steps,
mem_eff_attn,
# vae,
output_name,
):
# Get list of function parameters and values
parameters = list(locals().items())
original_file_path = file_path
file_path = get_file_path(file_path)
# print(file_path)
if not file_path == '' and not file_path == None:
# load variables from JSON file
with open(file_path, 'r') as f:
my_data = json.load(f)
my_data_lora = json.load(f)
print("Loading config...")
else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data = {}
# Return the values of the variables as a dictionary
return (
file_path,
my_data.get(
'pretrained_model_name_or_path', pretrained_model_name_or_path
),
my_data.get('v2', v2),
my_data.get('v_parameterization', v_parameterization),
my_data.get('logging_dir', logging_dir),
my_data.get('train_data_dir', train_data_dir),
my_data.get('reg_data_dir', reg_data_dir),
my_data.get('output_dir', output_dir),
my_data.get('max_resolution', max_resolution),
my_data.get('lr_scheduler', lr_scheduler),
my_data.get('lr_warmup', lr_warmup),
my_data.get('train_batch_size', train_batch_size),
my_data.get('epoch', epoch),
my_data.get('save_every_n_epochs', save_every_n_epochs),
my_data.get('mixed_precision', mixed_precision),
my_data.get('save_precision', save_precision),
my_data.get('seed', seed),
my_data.get(
'num_cpu_threads_per_process', num_cpu_threads_per_process
),
my_data.get('cache_latent', cache_latent),
my_data.get('caption_extention', caption_extention),
my_data.get('enable_bucket', enable_bucket),
my_data.get('gradient_checkpointing', gradient_checkpointing),
my_data.get('full_fp16', full_fp16),
my_data.get('no_token_padding', no_token_padding),
my_data.get('stop_text_encoder_training', stop_text_encoder_training),
my_data.get('use_8bit_adam', use_8bit_adam),
my_data.get('xformers', xformers),
my_data.get('save_model_as', save_model_as),
my_data.get('shuffle_caption', shuffle_caption),
my_data.get('save_state', save_state),
my_data.get('resume', resume),
my_data.get('prior_loss_weight', prior_loss_weight),
my_data.get('text_encoder_lr', text_encoder_lr),
my_data.get('unet_lr', unet_lr),
my_data.get('network_dim', network_dim),
my_data.get('lora_network_weights', lora_network_weights),
my_data.get('color_aug', color_aug),
my_data.get('flip_aug', flip_aug),
my_data.get('clip_skip', clip_skip),
my_data.get('gradient_accumulation_steps', gradient_accumulation_steps),
my_data.get('mem_eff_attn', mem_eff_attn),
# my_data.get('vae', vae),
)
my_data_lora = {}
values = [file_path]
for key, value in parameters:
# Set the value in the dictionary to the corresponding value in `my_data`, or the default value if not found
if not key in ['file_path']:
values.append(my_data_lora.get(key, value))
return tuple(values)
def train_model(
@ -296,23 +226,8 @@ def train_model(
clip_skip,
gradient_accumulation_steps,
mem_eff_attn,
# vae,
output_name,
):
def save_inference_file(output_dir, v2, v_parameterization):
# Copy inference model for v2 if required
if v2 and v_parameterization:
print(f'Saving v2-inference-v.yaml as {output_dir}/last.yaml')
shutil.copy(
f'./v2_inference/v2-inference-v.yaml',
f'{output_dir}/last.yaml',
)
elif v2:
print(f'Saving v2-inference.yaml as {output_dir}/last.yaml')
shutil.copy(
f'./v2_inference/v2-inference.yaml',
f'{output_dir}/last.yaml',
)
if pretrained_model_name_or_path == '':
msgbox('Source model information is missing')
return
@ -379,17 +294,6 @@ def train_model(
# Print the result
print(f'Folder {folder}: {steps} steps')
# Print the result
# print(f"{total_steps} total steps")
# if reg_data_dir == '':
# reg_factor = 1
# else:
# print(
# 'Regularisation images are used... Will double the number of steps required...'
# )
# reg_factor = 2
# calculate max_train_steps
max_train_steps = int(
math.ceil(
@ -496,68 +400,19 @@ def train_model(
run_cmd += f' --gradient_accumulation_steps={int(gradient_accumulation_steps)}'
# if not vae == '':
# run_cmd += f' --vae="{vae}"'
if not output_name == '':
run_cmd += f' --output_name="{output_name}"'
print(run_cmd)
# Run the command
subprocess.run(run_cmd)
# check if output_dir/last is a folder... therefore it is a diffuser model
last_dir = pathlib.Path(f'{output_dir}/last')
last_dir = pathlib.Path(f'{output_dir}/{output_name}')
if not last_dir.is_dir():
# Copy inference model for v2 if required
save_inference_file(output_dir, v2, v_parameterization)
def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
# define a list of substrings to search for
substrings_v2 = [
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
if str(value) in substrings_v2:
print('SD v2 model detected. Setting --v2 parameter')
v2 = True
v_parameterization = False
return value, v2, v_parameterization
# define a list of substrings to search for v-objective
substrings_v_parameterization = [
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
if str(value) in substrings_v_parameterization:
print(
'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization'
)
v2 = True
v_parameterization = True
return value, v2, v_parameterization
# define a list of substrings to v1.x
substrings_v1_model = [
'CompVis/stable-diffusion-v1-4',
'runwayml/stable-diffusion-v1-5',
]
if str(value) in substrings_v1_model:
v2 = False
v_parameterization = False
return value, v2, v_parameterization
if value == 'custom':
value = ''
v2 = False
v_parameterization = False
return value, v2, v_parameterization
save_inference_file(output_dir, v2, v_parameterization, output_name)
def UI(username, password):
@ -731,6 +586,13 @@ def lora_tab(
logging_dir_input_folder.click(
get_folder_path, outputs=logging_dir_input
)
with gr.Row():
output_name = gr.Textbox(
label='Model output name',
placeholder='Name of the model to output',
value='last',
interactive=True,
)
train_data_dir_input.change(
remove_doublequote,
inputs=[train_data_dir_input],
@ -766,7 +628,6 @@ def lora_tab(
outputs=lora_network_weights,
)
with gr.Row():
# learning_rate_input = gr.Textbox(label='Learning rate', value=1e-4, visible=False)
lr_scheduler_input = gr.Dropdown(
label='LR Scheduler',
choices=[
@ -941,7 +802,6 @@ def lora_tab(
reg_data_dir_input,
output_dir_input,
max_resolution_input,
# learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
train_batch_size_input,
@ -974,7 +834,7 @@ def lora_tab(
clip_skip,
gradient_accumulation_steps,
mem_eff_attn,
# vae,
output_name,
]
button_open_config.click(