Move functions to common_gui

Add model name support
This commit is contained in:
bmaltais 2023-01-09 11:48:57 -05:00
parent fdb4508a62
commit dc5afbb057
6 changed files with 605 additions and 811 deletions

View File

@ -101,6 +101,9 @@ Once you have created the LoRA network you can generate images via auto1111 by i
## Change history ## Change history
* 2023/01/10 (v20.1):
- Add support for `--output_name` to trainers
- Refactor code for easier maintenance
* 2023/01/10 (v20.0): * 2023/01/10 (v20.0):
- Update code base to match latest kohys_ss code upgrade in https://github.com/kohya-ss/sd-scripts - Update code base to match latest kohys_ss code upgrade in https://github.com/kohya-ss/sd-scripts
* 2023/01/09 (v19.4.3): * 2023/01/09 (v19.4.3):

View File

@ -18,6 +18,8 @@ from library.common_gui import (
get_any_file_path, get_any_file_path,
get_saveasfile_path, get_saveasfile_path,
color_aug_changed, color_aug_changed,
save_inference_file,
set_pretrained_model_name_or_path_input,
) )
from library.dreambooth_folder_creation_gui import ( from library.dreambooth_folder_creation_gui import (
gradio_dreambooth_folder_creation_tab, gradio_dreambooth_folder_creation_tab,
@ -102,45 +104,6 @@ def save_configuration(
'save_as', 'save_as',
] ]
} }
# variables = {
# 'pretrained_model_name_or_path': pretrained_model_name_or_path,
# 'v2': v2,
# 'v_parameterization': v_parameterization,
# 'logging_dir': logging_dir,
# 'train_data_dir': train_data_dir,
# 'reg_data_dir': reg_data_dir,
# 'output_dir': output_dir,
# 'max_resolution': max_resolution,
# 'learning_rate': learning_rate,
# 'lr_scheduler': lr_scheduler,
# 'lr_warmup': lr_warmup,
# 'train_batch_size': train_batch_size,
# 'epoch': epoch,
# 'save_every_n_epochs': save_every_n_epochs,
# 'mixed_precision': mixed_precision,
# 'save_precision': save_precision,
# 'seed': seed,
# 'num_cpu_threads_per_process': num_cpu_threads_per_process,
# 'cache_latent': cache_latent,
# 'caption_extention': caption_extention,
# 'enable_bucket': enable_bucket,
# 'gradient_checkpointing': gradient_checkpointing,
# 'full_fp16': full_fp16,
# 'no_token_padding': no_token_padding,
# 'stop_text_encoder_training': stop_text_encoder_training,
# 'use_8bit_adam': use_8bit_adam,
# 'xformers': xformers,
# 'save_model_as': save_model_as,
# 'shuffle_caption': shuffle_caption,
# 'save_state': save_state,
# 'resume': resume,
# 'prior_loss_weight': prior_loss_weight,
# 'color_aug': color_aug,
# 'flip_aug': flip_aug,
# 'clip_skip': clip_skip,
# 'vae': vae,
# 'output_name': output_name,
# }
# Save the data to the selected file # Save the data to the selected file
with open(file_path, 'w') as file: with open(file_path, 'w') as file:
@ -194,70 +157,23 @@ def open_configuration(
original_file_path = file_path original_file_path = file_path
file_path = get_file_path(file_path) file_path = get_file_path(file_path)
# print(file_path)
if not file_path == '' and not file_path == None: if not file_path == '' and not file_path == None:
# load variables from JSON file # load variables from JSON file
with open(file_path, 'r') as f: with open(file_path, 'r') as f:
my_data = json.load(f) my_data_db = json.load(f)
print("Loading config...")
else: else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data = {} my_data_db = {}
values = [file_path] values = [file_path]
for key, value in parameters: for key, value in parameters:
# Set the value in the dictionary to the corresponding value in `my_data`, or the default value if not found # Set the value in the dictionary to the corresponding value in `my_data`, or the default value if not found
if not key in ['file_path']: if not key in ['file_path']:
values.append(my_data.get(key, value)) values.append(my_data_db.get(key, value))
# print(values)
return tuple(values) return tuple(values)
# Return the values of the variables as a dictionary
# return (
# file_path,
# my_data.get(
# 'pretrained_model_name_or_path', pretrained_model_name_or_path
# ),
# my_data.get('v2', v2),
# my_data.get('v_parameterization', v_parameterization),
# my_data.get('logging_dir', logging_dir),
# my_data.get('train_data_dir', train_data_dir),
# my_data.get('reg_data_dir', reg_data_dir),
# my_data.get('output_dir', output_dir),
# my_data.get('max_resolution', max_resolution),
# my_data.get('learning_rate', learning_rate),
# my_data.get('lr_scheduler', lr_scheduler),
# my_data.get('lr_warmup', lr_warmup),
# my_data.get('train_batch_size', train_batch_size),
# my_data.get('epoch', epoch),
# my_data.get('save_every_n_epochs', save_every_n_epochs),
# my_data.get('mixed_precision', mixed_precision),
# my_data.get('save_precision', save_precision),
# my_data.get('seed', seed),
# my_data.get(
# 'num_cpu_threads_per_process', num_cpu_threads_per_process
# ),
# my_data.get('cache_latent', cache_latent),
# my_data.get('caption_extention', caption_extention),
# my_data.get('enable_bucket', enable_bucket),
# my_data.get('gradient_checkpointing', gradient_checkpointing),
# my_data.get('full_fp16', full_fp16),
# my_data.get('no_token_padding', no_token_padding),
# my_data.get('stop_text_encoder_training', stop_text_encoder_training),
# my_data.get('use_8bit_adam', use_8bit_adam),
# my_data.get('xformers', xformers),
# my_data.get('save_model_as', save_model_as),
# my_data.get('shuffle_caption', shuffle_caption),
# my_data.get('save_state', save_state),
# my_data.get('resume', resume),
# my_data.get('prior_loss_weight', prior_loss_weight),
# my_data.get('color_aug', color_aug),
# my_data.get('flip_aug', flip_aug),
# my_data.get('clip_skip', clip_skip),
# my_data.get('vae', vae),
# my_data.get('output_name', output_name),
# )
def train_model( def train_model(
pretrained_model_name_or_path, pretrained_model_name_or_path,
@ -298,29 +214,6 @@ def train_model(
vae, vae,
output_name, output_name,
): ):
def save_inference_file(output_dir, v2, v_parameterization, output_name):
# List all files in the directory
files = os.listdir(output_dir)
# Iterate over the list of files
for file in files:
# Check if the file starts with the value of save_inference_file
if file.startswith(output_name):
# Copy the v2-inference-v.yaml file to the current file, with a .yaml extension
if v2 and v_parameterization:
print(f'Saving v2-inference-v.yaml as {output_dir}/{file}.yaml')
shutil.copy(
f'./v2_inference/v2-inference-v.yaml',
f'{output_dir}/{file}.yaml',
)
elif v2:
print(f'Saving v2-inference.yaml as {output_dir}/{file}.yaml')
shutil.copy(
f'./v2_inference/v2-inference.yaml',
f'{output_dir}/{file}.yaml',
)
if pretrained_model_name_or_path == '': if pretrained_model_name_or_path == '':
msgbox('Source model information is missing') msgbox('Source model information is missing')
return return
@ -487,57 +380,6 @@ def train_model(
save_inference_file(output_dir, v2, v_parameterization, output_name) save_inference_file(output_dir, v2, v_parameterization, output_name)
def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
# define a list of substrings to search for
substrings_v2 = [
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
if str(value) in substrings_v2:
print('SD v2 model detected. Setting --v2 parameter')
v2 = True
v_parameterization = False
return value, v2, v_parameterization
# define a list of substrings to search for v-objective
substrings_v_parameterization = [
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
if str(value) in substrings_v_parameterization:
print(
'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization'
)
v2 = True
v_parameterization = True
return value, v2, v_parameterization
# define a list of substrings to v1.x
substrings_v1_model = [
'CompVis/stable-diffusion-v1-4',
'runwayml/stable-diffusion-v1-5',
]
if str(value) in substrings_v1_model:
v2 = False
v_parameterization = False
return value, v2, v_parameterization
if value == 'custom':
value = ''
v2 = False
v_parameterization = False
return value, v2, v_parameterization
def UI(username, password): def UI(username, password):
css = '' css = ''
@ -593,11 +435,6 @@ def dreambooth_tab(
placeholder="type the configuration file path or use the 'Open' button above to select it...", placeholder="type the configuration file path or use the 'Open' button above to select it...",
interactive=True, interactive=True,
) )
# config_file_name.change(
# remove_doublequote,
# inputs=[config_file_name],
# outputs=[config_file_name],
# )
with gr.Tab('Source model'): with gr.Tab('Source model'):
# Define the input elements # Define the input elements
with gr.Row(): with gr.Row():

View File

@ -30,29 +30,50 @@ def train(args):
tokenizer = train_util.load_tokenizer(args) tokenizer = train_util.load_tokenizer(args)
train_dataset = train_util.FineTuningDataset(args.in_json, args.train_batch_size, args.train_data_dir, train_dataset = train_util.FineTuningDataset(
tokenizer, args.max_token_length, args.shuffle_caption, args.keep_tokens, args.in_json,
args.resolution, args.enable_bucket, args.min_bucket_reso, args.max_bucket_reso, args.train_batch_size,
args.flip_aug, args.color_aug, args.face_crop_aug_range, args.random_crop, args.train_data_dir,
args.dataset_repeats, args.debug_dataset) tokenizer,
args.max_token_length,
args.shuffle_caption,
args.keep_tokens,
args.resolution,
args.enable_bucket,
args.min_bucket_reso,
args.max_bucket_reso,
args.flip_aug,
args.color_aug,
args.face_crop_aug_range,
args.random_crop,
args.dataset_repeats,
args.debug_dataset,
)
train_dataset.make_buckets() train_dataset.make_buckets()
if args.debug_dataset: if args.debug_dataset:
train_util.debug_dataset(train_dataset) train_util.debug_dataset(train_dataset)
return return
if len(train_dataset) == 0: if len(train_dataset) == 0:
print("No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。") print(
'No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。'
)
return return
# acceleratorを準備する # acceleratorを準備する
print("prepare accelerator") print('prepare accelerator')
accelerator, unwrap_model = train_util.prepare_accelerator(args) accelerator, unwrap_model = train_util.prepare_accelerator(args)
# mixed precisionに対応した型を用意しておき適宜castする # mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, save_dtype = train_util.prepare_dtype(args) weight_dtype, save_dtype = train_util.prepare_dtype(args)
# モデルを読み込む # モデルを読み込む
text_encoder, vae, unet, load_stable_diffusion_format = train_util.load_target_model(args, weight_dtype) (
text_encoder,
vae,
unet,
load_stable_diffusion_format,
) = train_util.load_target_model(args, weight_dtype)
# verify load/save model formats # verify load/save model formats
if load_stable_diffusion_format: if load_stable_diffusion_format:
@ -66,8 +87,13 @@ def train(args):
save_stable_diffusion_format = load_stable_diffusion_format save_stable_diffusion_format = load_stable_diffusion_format
use_safetensors = args.use_safetensors use_safetensors = args.use_safetensors
else: else:
save_stable_diffusion_format = args.save_model_as.lower() == 'ckpt' or args.save_model_as.lower() == 'safetensors' save_stable_diffusion_format = (
use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower()) args.save_model_as.lower() == 'ckpt'
or args.save_model_as.lower() == 'safetensors'
)
use_safetensors = args.use_safetensors or (
'safetensors' in args.save_model_as.lower()
)
# Diffusers版のxformers使用フラグを設定する関数 # Diffusers版のxformers使用フラグを設定する関数
def set_diffusers_xformers_flag(model, valid): def set_diffusers_xformers_flag(model, valid):
@ -80,7 +106,7 @@ def train(args):
# Any children which exposes the set_use_memory_efficient_attention_xformers method # Any children which exposes the set_use_memory_efficient_attention_xformers method
# gets the message # gets the message
def fn_recursive_set_mem_eff(module: torch.nn.Module): def fn_recursive_set_mem_eff(module: torch.nn.Module):
if hasattr(module, "set_use_memory_efficient_attention_xformers"): if hasattr(module, 'set_use_memory_efficient_attention_xformers'):
module.set_use_memory_efficient_attention_xformers(valid) module.set_use_memory_efficient_attention_xformers(valid)
for child in module.children(): for child in module.children():
@ -90,7 +116,7 @@ def train(args):
# モデルに xformers とか memory efficient attention を組み込む # モデルに xformers とか memory efficient attention を組み込む
if args.diffusers_xformers: if args.diffusers_xformers:
print("Use xformers by Diffusers") print('Use xformers by Diffusers')
set_diffusers_xformers_flag(unet, True) set_diffusers_xformers_flag(unet, True)
else: else:
# Windows版のxformersはfloatで学習できないのでxformersを使わない設定も可能にしておく必要がある # Windows版のxformersはfloatで学習できないのでxformersを使わない設定も可能にしておく必要がある
@ -105,7 +131,7 @@ def train(args):
vae.eval() vae.eval()
with torch.no_grad(): with torch.no_grad():
train_dataset.cache_latents(vae) train_dataset.cache_latents(vae)
vae.to("cpu") vae.to('cpu')
if torch.cuda.is_available(): if torch.cuda.is_available():
torch.cuda.empty_cache() torch.cuda.empty_cache()
gc.collect() gc.collect()
@ -117,7 +143,7 @@ def train(args):
training_models.append(unet) training_models.append(unet)
if args.train_text_encoder: if args.train_text_encoder:
print("enable text encoder training") print('enable text encoder training')
if args.gradient_checkpointing: if args.gradient_checkpointing:
text_encoder.gradient_checkpointing_enable() text_encoder.gradient_checkpointing_enable()
training_models.append(text_encoder) training_models.append(text_encoder)
@ -143,15 +169,17 @@ def train(args):
params_to_optimize = params params_to_optimize = params
# 学習に必要なクラスを準備する # 学習に必要なクラスを準備する
print("prepare optimizer, data loader etc.") print('prepare optimizer, data loader etc.')
# 8-bit Adamを使う # 8-bit Adamを使う
if args.use_8bit_adam: if args.use_8bit_adam:
try: try:
import bitsandbytes as bnb import bitsandbytes as bnb
except ImportError: except ImportError:
raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです") raise ImportError(
print("use 8-bit Adam optimizer") 'No bitsand bytes / bitsandbytesがインストールされていないようです'
)
print('use 8-bit Adam optimizer')
optimizer_class = bnb.optim.AdamW8bit optimizer_class = bnb.optim.AdamW8bit
else: else:
optimizer_class = torch.optim.AdamW optimizer_class = torch.optim.AdamW
@ -163,25 +191,46 @@ def train(args):
# DataLoaderのプロセス数0はメインプロセスになる # DataLoaderのプロセス数0はメインプロセスになる
n_workers = min(8, os.cpu_count() - 1) # cpu_count-1 ただし最大8 n_workers = min(8, os.cpu_count() - 1) # cpu_count-1 ただし最大8
train_dataloader = torch.utils.data.DataLoader( train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=1, shuffle=False, collate_fn=collate_fn, num_workers=n_workers) train_dataset,
batch_size=1,
shuffle=False,
collate_fn=collate_fn,
num_workers=n_workers,
)
# lr schedulerを用意する # lr schedulerを用意する
lr_scheduler = diffusers.optimization.get_scheduler( lr_scheduler = diffusers.optimization.get_scheduler(
args.lr_scheduler, optimizer, num_warmup_steps=args.lr_warmup_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps) args.lr_scheduler,
optimizer,
num_warmup_steps=args.lr_warmup_steps,
num_training_steps=args.max_train_steps
* args.gradient_accumulation_steps,
)
# 実験的機能勾配も含めたfp16学習を行う モデル全体をfp16にする # 実験的機能勾配も含めたfp16学習を行う モデル全体をfp16にする
if args.full_fp16: if args.full_fp16:
assert args.mixed_precision == "fp16", "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。" assert (
print("enable full fp16 training.") args.mixed_precision == 'fp16'
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
print('enable full fp16 training.')
unet.to(weight_dtype) unet.to(weight_dtype)
text_encoder.to(weight_dtype) text_encoder.to(weight_dtype)
# acceleratorがなんかよろしくやってくれるらしい # acceleratorがなんかよろしくやってくれるらしい
if args.train_text_encoder: if args.train_text_encoder:
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( (
unet, text_encoder, optimizer, train_dataloader, lr_scheduler) unet,
text_encoder,
optimizer,
train_dataloader,
lr_scheduler,
) = accelerator.prepare(
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
)
else: else:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler) unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
# 実験的機能勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする # 実験的機能勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
if args.full_fp16: if args.full_fp16:
@ -189,84 +238,130 @@ def train(args):
# resumeする # resumeする
if args.resume is not None: if args.resume is not None:
print(f"resume training from state: {args.resume}") print(f'resume training from state: {args.resume}')
accelerator.load_state(args.resume) accelerator.load_state(args.resume)
# epoch数を計算する # epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) num_update_steps_per_epoch = math.ceil(
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) len(train_dataloader) / args.gradient_accumulation_steps
)
num_train_epochs = math.ceil(
args.max_train_steps / num_update_steps_per_epoch
)
# 学習する # 学習する
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps total_batch_size = (
print("running training / 学習開始") args.train_batch_size
print(f" num examples / サンプル数: {train_dataset.num_train_images}") * accelerator.num_processes
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") * args.gradient_accumulation_steps
print(f" num epochs / epoch数: {num_train_epochs}") )
print(f" batch size per device / バッチサイズ: {args.train_batch_size}") print('running training / 学習開始')
print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}") print(f' num examples / サンプル数: {train_dataset.num_train_images}')
print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") print(f' num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}')
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") print(f' num epochs / epoch数: {num_train_epochs}')
print(f' batch size per device / バッチサイズ: {args.train_batch_size}')
print(
f' total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}'
)
print(
f' gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}'
)
print(f' total optimization steps / 学習ステップ数: {args.max_train_steps}')
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps") progress_bar = tqdm(
range(args.max_train_steps),
smoothing=0,
disable=not accelerator.is_local_main_process,
desc='steps',
)
global_step = 0 global_step = 0
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", noise_scheduler = DDPMScheduler(
num_train_timesteps=1000, clip_sample=False) beta_start=0.00085,
beta_end=0.012,
beta_schedule='scaled_linear',
num_train_timesteps=1000,
clip_sample=False,
)
if accelerator.is_main_process: if accelerator.is_main_process:
accelerator.init_trackers("finetuning") accelerator.init_trackers('finetuning')
for epoch in range(num_train_epochs): for epoch in range(num_train_epochs):
print(f"epoch {epoch+1}/{num_train_epochs}") print(f'epoch {epoch+1}/{num_train_epochs}')
for m in training_models: for m in training_models:
m.train() m.train()
loss_total = 0 loss_total = 0
for step, batch in enumerate(train_dataloader): for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(training_models[0]): # 複数モデルに対応していない模様だがとりあえずこうしておく with accelerator.accumulate(
training_models[0]
): # 複数モデルに対応していない模様だがとりあえずこうしておく
with torch.no_grad(): with torch.no_grad():
if "latents" in batch and batch["latents"] is not None: if 'latents' in batch and batch['latents'] is not None:
latents = batch["latents"].to(accelerator.device) latents = batch['latents'].to(accelerator.device)
else: else:
# latentに変換 # latentに変換
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample() latents = vae.encode(
batch['images'].to(dtype=weight_dtype)
).latent_dist.sample()
latents = latents * 0.18215 latents = latents * 0.18215
b_size = latents.shape[0] b_size = latents.shape[0]
with torch.set_grad_enabled(args.train_text_encoder): with torch.set_grad_enabled(args.train_text_encoder):
# Get the text embedding for conditioning # Get the text embedding for conditioning
input_ids = batch["input_ids"].to(accelerator.device) input_ids = batch['input_ids'].to(accelerator.device)
encoder_hidden_states = train_util.get_hidden_states( encoder_hidden_states = train_util.get_hidden_states(
args, input_ids, tokenizer, text_encoder, None if not args.full_fp16 else weight_dtype) args,
input_ids,
tokenizer,
text_encoder,
None if not args.full_fp16 else weight_dtype,
)
# Sample noise that we'll add to the latents # Sample noise that we'll add to the latents
noise = torch.randn_like(latents, device=latents.device) noise = torch.randn_like(latents, device=latents.device)
# Sample a random timestep for each image # Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device) timesteps = torch.randint(
0,
noise_scheduler.config.num_train_timesteps,
(b_size,),
device=latents.device,
)
timesteps = timesteps.long() timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep # Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process) # (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) noisy_latents = noise_scheduler.add_noise(
latents, noise, timesteps
)
# Predict the noise residual # Predict the noise residual
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample noise_pred = unet(
noisy_latents, timesteps, encoder_hidden_states
).sample
if args.v_parameterization: if args.v_parameterization:
# v-parameterization training # v-parameterization training
target = noise_scheduler.get_velocity(latents, noise, timesteps) target = noise_scheduler.get_velocity(
latents, noise, timesteps
)
else: else:
target = noise target = noise
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="mean") loss = torch.nn.functional.mse_loss(
noise_pred.float(), target.float(), reduction='mean'
)
accelerator.backward(loss) accelerator.backward(loss)
if accelerator.sync_gradients: if accelerator.sync_gradients:
params_to_clip = [] params_to_clip = []
for m in training_models: for m in training_models:
params_to_clip.extend(m.parameters()) params_to_clip.extend(m.parameters())
accelerator.clip_grad_norm_(params_to_clip, 1.0) # args.max_grad_norm) accelerator.clip_grad_norm_(
params_to_clip, 1.0
) # args.max_grad_norm)
optimizer.step() optimizer.step()
lr_scheduler.step() lr_scheduler.step()
@ -279,27 +374,46 @@ def train(args):
current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず
if args.logging_dir is not None: if args.logging_dir is not None:
logs = {"loss": current_loss, "lr": lr_scheduler.get_last_lr()[0]} logs = {
'loss': current_loss,
'lr': lr_scheduler.get_last_lr()[0],
}
accelerator.log(logs, step=global_step) accelerator.log(logs, step=global_step)
loss_total += current_loss loss_total += current_loss
avr_loss = loss_total / (step+1) avr_loss = loss_total / (step + 1)
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]} logs = {'loss': avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs) progress_bar.set_postfix(**logs)
if global_step >= args.max_train_steps: if global_step >= args.max_train_steps:
break break
if args.logging_dir is not None: if args.logging_dir is not None:
logs = {"epoch_loss": loss_total / len(train_dataloader)} logs = {'epoch_loss': loss_total / len(train_dataloader)}
accelerator.log(logs, step=epoch+1) accelerator.log(logs, step=epoch + 1)
accelerator.wait_for_everyone() accelerator.wait_for_everyone()
if args.save_every_n_epochs is not None: if args.save_every_n_epochs is not None:
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path src_path = (
train_util.save_sd_model_on_epoch_end(args, accelerator, src_path, save_stable_diffusion_format, use_safetensors, src_stable_diffusion_ckpt
save_dtype, epoch, num_train_epochs, global_step, unwrap_model(text_encoder), unwrap_model(unet), vae) if save_stable_diffusion_format
else src_diffusers_model_path
)
train_util.save_sd_model_on_epoch_end(
args,
accelerator,
src_path,
save_stable_diffusion_format,
use_safetensors,
save_dtype,
epoch,
num_train_epochs,
global_step,
unwrap_model(text_encoder),
unwrap_model(unet),
vae,
)
is_main_process = accelerator.is_main_process is_main_process = accelerator.is_main_process
if is_main_process: if is_main_process:
@ -314,10 +428,24 @@ def train(args):
del accelerator # この後メモリを使うのでこれは消す del accelerator # この後メモリを使うのでこれは消す
if is_main_process: if is_main_process:
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path src_path = (
train_util.save_sd_model_on_train_end(args, src_path, save_stable_diffusion_format, use_safetensors, src_stable_diffusion_ckpt
save_dtype, epoch, global_step, text_encoder, unet, vae) if save_stable_diffusion_format
print("model saved.") else src_diffusers_model_path
)
train_util.save_sd_model_on_train_end(
args,
src_path,
save_stable_diffusion_format,
use_safetensors,
save_dtype,
epoch,
global_step,
text_encoder,
unet,
vae,
)
print('model saved.')
if __name__ == '__main__': if __name__ == '__main__':
@ -328,9 +456,16 @@ if __name__ == '__main__':
train_util.add_training_arguments(parser, False) train_util.add_training_arguments(parser, False)
train_util.add_sd_saving_arguments(parser) train_util.add_sd_saving_arguments(parser)
parser.add_argument("--diffusers_xformers", action='store_true', parser.add_argument(
help='use xformers by diffusers / Diffusersでxformersを使用する') '--diffusers_xformers',
parser.add_argument("--train_text_encoder", action="store_true", help="train text encoder / text encoderも学習する") action='store_true',
help='use xformers by diffusers / Diffusersでxformersを使用する',
)
parser.add_argument(
'--train_text_encoder',
action='store_true',
help='train text encoder / text encoderも学習する',
)
args = parser.parse_args() args = parser.parse_args()
train(args) train(args)

View File

@ -11,6 +11,8 @@ from library.common_gui import (
get_file_path, get_file_path,
get_any_file_path, get_any_file_path,
get_saveasfile_path, get_saveasfile_path,
save_inference_file,
set_pretrained_model_name_or_path_input,
) )
from library.utilities import utilities_tab from library.utilities import utilities_tab
@ -63,7 +65,11 @@ def save_configuration(
gradient_accumulation_steps, gradient_accumulation_steps,
mem_eff_attn, mem_eff_attn,
shuffle_caption, shuffle_caption,
output_name,
): ):
# Get list of function parameters and values
parameters = list(locals().items())
original_file_path = file_path original_file_path = file_path
save_as_bool = True if save_as.get('label') == 'True' else False save_as_bool = True if save_as.get('label') == 'True' else False
@ -83,51 +89,18 @@ def save_configuration(
# Return the values of the variables as a dictionary # Return the values of the variables as a dictionary
variables = { variables = {
'pretrained_model_name_or_path': pretrained_model_name_or_path, name: value
'v2': v2, for name, value in parameters # locals().items()
'v_parameterization': v_parameterization, if name
'train_dir': train_dir, not in [
'image_folder': image_folder, 'file_path',
'output_dir': output_dir, 'save_as',
'logging_dir': logging_dir, ]
'max_resolution': max_resolution,
'min_bucket_reso': min_bucket_reso,
'max_bucket_reso': max_bucket_reso,
'batch_size': batch_size,
'flip_aug': flip_aug,
'caption_metadata_filename': caption_metadata_filename,
'latent_metadata_filename': latent_metadata_filename,
'full_path': full_path,
'learning_rate': learning_rate,
'lr_scheduler': lr_scheduler,
'lr_warmup': lr_warmup,
'dataset_repeats': dataset_repeats,
'train_batch_size': train_batch_size,
'epoch': epoch,
'save_every_n_epochs': save_every_n_epochs,
'mixed_precision': mixed_precision,
'save_precision': save_precision,
'seed': seed,
'num_cpu_threads_per_process': num_cpu_threads_per_process,
'train_text_encoder': train_text_encoder,
'create_buckets': create_buckets,
'create_caption': create_caption,
'save_model_as': save_model_as,
'caption_extension': caption_extension,
'use_8bit_adam': use_8bit_adam,
'xformers': xformers,
'clip_skip': clip_skip,
'save_state': save_state,
'resume': resume,
'gradient_checkpointing': gradient_checkpointing,
'gradient_accumulation_steps': gradient_accumulation_steps,
'mem_eff_attn': mem_eff_attn,
'shuffle_caption': shuffle_caption,
} }
# Save the data to the selected file # Save the data to the selected file
with open(file_path, 'w') as file: with open(file_path, 'w') as file:
json.dump(variables, file) json.dump(variables, file, indent=2)
return file_path return file_path
@ -174,7 +147,11 @@ def open_config_file(
gradient_accumulation_steps, gradient_accumulation_steps,
mem_eff_attn, mem_eff_attn,
shuffle_caption, shuffle_caption,
output_name,
): ):
# Get list of function parameters and values
parameters = list(locals().items())
original_file_path = file_path original_file_path = file_path
file_path = get_file_path(file_path) file_path = get_file_path(file_path)
@ -182,59 +159,18 @@ def open_config_file(
print(f'Loading config file {file_path}') print(f'Loading config file {file_path}')
# load variables from JSON file # load variables from JSON file
with open(file_path, 'r') as f: with open(file_path, 'r') as f:
my_data = json.load(f) my_data_ft = json.load(f)
else: else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data = {} my_data_ft = {}
# Return the values of the variables as a dictionary values = [file_path]
return ( for key, value in parameters:
file_path, # Set the value in the dictionary to the corresponding value in `my_data_ft`, or the default value if not found
my_data.get( if not key in ['file_path']:
'pretrained_model_name_or_path', pretrained_model_name_or_path values.append(my_data_ft.get(key, value))
), # print(values)
my_data.get('v2', v2), return tuple(values)
my_data.get('v_parameterization', v_parameterization),
my_data.get('train_dir', train_dir),
my_data.get('image_folder', image_folder),
my_data.get('output_dir', output_dir),
my_data.get('logging_dir', logging_dir),
my_data.get('max_resolution', max_resolution),
my_data.get('min_bucket_reso', min_bucket_reso),
my_data.get('max_bucket_reso', max_bucket_reso),
my_data.get('batch_size', batch_size),
my_data.get('flip_aug', flip_aug),
my_data.get('caption_metadata_filename', caption_metadata_filename),
my_data.get('latent_metadata_filename', latent_metadata_filename),
my_data.get('full_path', full_path),
my_data.get('learning_rate', learning_rate),
my_data.get('lr_scheduler', lr_scheduler),
my_data.get('lr_warmup', lr_warmup),
my_data.get('dataset_repeats', dataset_repeats),
my_data.get('train_batch_size', train_batch_size),
my_data.get('epoch', epoch),
my_data.get('save_every_n_epochs', save_every_n_epochs),
my_data.get('mixed_precision', mixed_precision),
my_data.get('save_precision', save_precision),
my_data.get('seed', seed),
my_data.get(
'num_cpu_threads_per_process', num_cpu_threads_per_process
),
my_data.get('train_text_encoder', train_text_encoder),
my_data.get('create_buckets', create_buckets),
my_data.get('create_caption', create_caption),
my_data.get('save_model_as', save_model_as),
my_data.get('caption_extension', caption_extension),
my_data.get('use_8bit_adam', use_8bit_adam),
my_data.get('xformers', xformers),
my_data.get('clip_skip', clip_skip),
my_data.get('save_state', save_state),
my_data.get('resume', resume),
my_data.get('gradient_checkpointing', gradient_checkpointing),
my_data.get('gradient_accumulation_steps', gradient_accumulation_steps),
my_data.get('mem_eff_attn', mem_eff_attn),
my_data.get('shuffle_caption', shuffle_caption),
)
def train_model( def train_model(
@ -278,22 +214,8 @@ def train_model(
gradient_accumulation_steps, gradient_accumulation_steps,
mem_eff_attn, mem_eff_attn,
shuffle_caption, shuffle_caption,
output_name,
): ):
def save_inference_file(output_dir, v2, v_parameterization):
# Copy inference model for v2 if required
if v2 and v_parameterization:
print(f'Saving v2-inference-v.yaml as {output_dir}/last.yaml')
shutil.copy(
f'./v2_inference/v2-inference-v.yaml',
f'{output_dir}/last.yaml',
)
elif v2:
print(f'Saving v2-inference.yaml as {output_dir}/last.yaml')
shutil.copy(
f'./v2_inference/v2-inference.yaml',
f'{output_dir}/last.yaml',
)
# create caption json file # create caption json file
if generate_caption_database: if generate_caption_database:
if not os.path.exists(train_dir): if not os.path.exists(train_dir):
@ -407,68 +329,19 @@ def train_model(
run_cmd += ' --save_state' run_cmd += ' --save_state'
if not resume == '': if not resume == '':
run_cmd += f' --resume={resume}' run_cmd += f' --resume={resume}'
if not output_name == '':
run_cmd += f' --output_name="{output_name}"'
print(run_cmd) print(run_cmd)
# Run the command # Run the command
subprocess.run(run_cmd) subprocess.run(run_cmd)
# check if output_dir/last is a folder... therefore it is a diffuser model # check if output_dir/last is a folder... therefore it is a diffuser model
last_dir = pathlib.Path(f'{output_dir}/last') last_dir = pathlib.Path(f'{output_dir}/{output_name}')
if not last_dir.is_dir(): if not last_dir.is_dir():
# Copy inference model for v2 if required # Copy inference model for v2 if required
save_inference_file(output_dir, v2, v_parameterization) save_inference_file(output_dir, v2, v_parameterization, output_name)
def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
# define a list of substrings to search for
substrings_v2 = [
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
if str(value) in substrings_v2:
print('SD v2 model detected. Setting --v2 parameter')
v2 = True
v_parameterization = False
return value, v2, v_parameterization
# define a list of substrings to search for v-objective
substrings_v_parameterization = [
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
if str(value) in substrings_v_parameterization:
print(
'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization'
)
v2 = True
v_parameterization = True
return value, v2, v_parameterization
# define a list of substrings to v1.x
substrings_v1_model = [
'CompVis/stable-diffusion-v1-4',
'runwayml/stable-diffusion-v1-5',
]
if str(value) in substrings_v1_model:
v2 = False
v_parameterization = False
return value, v2, v_parameterization
if value == 'custom':
value = ''
v2 = False
v_parameterization = False
return value, v2, v_parameterization
def remove_doublequote(file_path): def remove_doublequote(file_path):
@ -610,7 +483,7 @@ def finetune_tab():
) )
with gr.Row(): with gr.Row():
output_dir_input = gr.Textbox( output_dir_input = gr.Textbox(
label='Output folder', label='Model output folder',
placeholder='folder where the model will be saved', placeholder='folder where the model will be saved',
) )
output_dir_input_folder = gr.Button( output_dir_input_folder = gr.Button(
@ -630,6 +503,13 @@ def finetune_tab():
logging_dir_input_folder.click( logging_dir_input_folder.click(
get_folder_path, outputs=logging_dir_input get_folder_path, outputs=logging_dir_input
) )
with gr.Row():
output_name = gr.Textbox(
label='Model output name',
placeholder='Name of the model to output',
value='last',
interactive=True,
)
train_dir_input.change( train_dir_input.change(
remove_doublequote, remove_doublequote,
inputs=[train_dir_input], inputs=[train_dir_input],
@ -814,6 +694,7 @@ def finetune_tab():
gradient_accumulation_steps, gradient_accumulation_steps,
mem_eff_attn, mem_eff_attn,
shuffle_caption, shuffle_caption,
output_name,
] ]
button_run.click(train_model, inputs=settings_list) button_run.click(train_model, inputs=settings_list)

View File

@ -2,6 +2,7 @@ from tkinter import filedialog, Tk
import os import os
import gradio as gr import gradio as gr
from easygui import msgbox from easygui import msgbox
import shutil
def get_dir_and_file(file_path): def get_dir_and_file(file_path):
dir_path, file_name = os.path.split(file_path) dir_path, file_name = os.path.split(file_path)
@ -184,3 +185,80 @@ def color_aug_changed(color_aug):
return gr.Checkbox.update(value=False, interactive=False) return gr.Checkbox.update(value=False, interactive=False)
else: else:
return gr.Checkbox.update(value=True, interactive=True) return gr.Checkbox.update(value=True, interactive=True)
def save_inference_file(output_dir, v2, v_parameterization, output_name):
# List all files in the directory
files = os.listdir(output_dir)
# Iterate over the list of files
for file in files:
# Check if the file starts with the value of output_name
if file.startswith(output_name):
# Check if it is a file or a directory
if os.path.isfile(os.path.join(output_dir, file)):
# Split the file name and extension
file_name, ext = os.path.splitext(file)
# Copy the v2-inference-v.yaml file to the current file, with a .yaml extension
if v2 and v_parameterization:
print(f'Saving v2-inference-v.yaml as {output_dir}/{file_name}.yaml')
shutil.copy(
f'./v2_inference/v2-inference-v.yaml',
f'{output_dir}/{file_name}.yaml',
)
elif v2:
print(f'Saving v2-inference.yaml as {output_dir}/{file_name}.yaml')
shutil.copy(
f'./v2_inference/v2-inference.yaml',
f'{output_dir}/{file_name}.yaml',
)
def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
# define a list of substrings to search for
substrings_v2 = [
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
if str(value) in substrings_v2:
print('SD v2 model detected. Setting --v2 parameter')
v2 = True
v_parameterization = False
return value, v2, v_parameterization
# define a list of substrings to search for v-objective
substrings_v_parameterization = [
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
if str(value) in substrings_v_parameterization:
print(
'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization'
)
v2 = True
v_parameterization = True
return value, v2, v_parameterization
# define a list of substrings to v1.x
substrings_v1_model = [
'CompVis/stable-diffusion-v1-4',
'runwayml/stable-diffusion-v1-5',
]
if str(value) in substrings_v1_model:
v2 = False
v_parameterization = False
return value, v2, v_parameterization
if value == 'custom':
value = ''
v2 = False
v_parameterization = False
return value, v2, v_parameterization

View File

@ -18,6 +18,8 @@ from library.common_gui import (
get_any_file_path, get_any_file_path,
get_saveasfile_path, get_saveasfile_path,
color_aug_changed, color_aug_changed,
save_inference_file,
set_pretrained_model_name_or_path_input,
) )
from library.dreambooth_folder_creation_gui import ( from library.dreambooth_folder_creation_gui import (
gradio_dreambooth_folder_creation_tab, gradio_dreambooth_folder_creation_tab,
@ -76,8 +78,11 @@ def save_configuration(
clip_skip, clip_skip,
gradient_accumulation_steps, gradient_accumulation_steps,
mem_eff_attn, mem_eff_attn,
# vae, output_name,
): ):
# Get list of function parameters and values
parameters = list(locals().items())
original_file_path = file_path original_file_path = file_path
save_as_bool = True if save_as.get('label') == 'True' else False save_as_bool = True if save_as.get('label') == 'True' else False
@ -97,85 +102,51 @@ def save_configuration(
# Return the values of the variables as a dictionary # Return the values of the variables as a dictionary
variables = { variables = {
'pretrained_model_name_or_path': pretrained_model_name_or_path, name: value
'v2': v2, for name, value in parameters # locals().items()
'v_parameterization': v_parameterization, if name
'logging_dir': logging_dir, not in [
'train_data_dir': train_data_dir, 'file_path',
'reg_data_dir': reg_data_dir, 'save_as',
'output_dir': output_dir, ]
'max_resolution': max_resolution,
'lr_scheduler': lr_scheduler,
'lr_warmup': lr_warmup,
'train_batch_size': train_batch_size,
'epoch': epoch,
'save_every_n_epochs': save_every_n_epochs,
'mixed_precision': mixed_precision,
'save_precision': save_precision,
'seed': seed,
'num_cpu_threads_per_process': num_cpu_threads_per_process,
'cache_latent': cache_latent,
'caption_extention': caption_extention,
'enable_bucket': enable_bucket,
'gradient_checkpointing': gradient_checkpointing,
'full_fp16': full_fp16,
'no_token_padding': no_token_padding,
'stop_text_encoder_training': stop_text_encoder_training,
'use_8bit_adam': use_8bit_adam,
'xformers': xformers,
'save_model_as': save_model_as,
'shuffle_caption': shuffle_caption,
'save_state': save_state,
'resume': resume,
'prior_loss_weight': prior_loss_weight,
'text_encoder_lr': text_encoder_lr,
'unet_lr': unet_lr,
'network_dim': network_dim,
'lora_network_weights': lora_network_weights,
'color_aug': color_aug,
'flip_aug': flip_aug,
'clip_skip': clip_skip,
'gradient_accumulation_steps': gradient_accumulation_steps,
'mem_eff_attn': mem_eff_attn,
# 'vae': vae,
} }
# Save the data to the selected file # Save the data to the selected file
with open(file_path, 'w') as file: with open(file_path, 'w') as file:
json.dump(variables, file) json.dump(variables, file, indent=2)
return file_path return file_path
def open_configuration( def open_configuration(
file_path, file_path,
pretrained_model_name_or_path, pretrained_model_name_or_path_input,
v2, v2_input,
v_parameterization, v_parameterization_input,
logging_dir, logging_dir_input,
train_data_dir, train_data_dir_input,
reg_data_dir, reg_data_dir_input,
output_dir, output_dir_input,
max_resolution, max_resolution_input,
lr_scheduler, lr_scheduler_input,
lr_warmup, lr_warmup_input,
train_batch_size, train_batch_size_input,
epoch, epoch_input,
save_every_n_epochs, save_every_n_epochs_input,
mixed_precision, mixed_precision_input,
save_precision, save_precision_input,
seed, seed_input,
num_cpu_threads_per_process, num_cpu_threads_per_process_input,
cache_latent, cache_latent_input,
caption_extention, caption_extention_input,
enable_bucket, enable_bucket_input,
gradient_checkpointing, gradient_checkpointing,
full_fp16, full_fp16_input,
no_token_padding, no_token_padding_input,
stop_text_encoder_training, stop_text_encoder_training_input,
use_8bit_adam, use_8bit_adam_input,
xformers, xformers_input,
save_model_as, save_model_as_dropdown,
shuffle_caption, shuffle_caption,
save_state, save_state,
resume, resume,
@ -189,70 +160,29 @@ def open_configuration(
clip_skip, clip_skip,
gradient_accumulation_steps, gradient_accumulation_steps,
mem_eff_attn, mem_eff_attn,
# vae, output_name,
): ):
# Get list of function parameters and values
parameters = list(locals().items())
original_file_path = file_path original_file_path = file_path
file_path = get_file_path(file_path) file_path = get_file_path(file_path)
# print(file_path)
if not file_path == '' and not file_path == None: if not file_path == '' and not file_path == None:
# load variables from JSON file # load variables from JSON file
with open(file_path, 'r') as f: with open(file_path, 'r') as f:
my_data = json.load(f) my_data_lora = json.load(f)
print("Loading config...")
else: else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data = {} my_data_lora = {}
# Return the values of the variables as a dictionary values = [file_path]
return ( for key, value in parameters:
file_path, # Set the value in the dictionary to the corresponding value in `my_data`, or the default value if not found
my_data.get( if not key in ['file_path']:
'pretrained_model_name_or_path', pretrained_model_name_or_path values.append(my_data_lora.get(key, value))
), return tuple(values)
my_data.get('v2', v2),
my_data.get('v_parameterization', v_parameterization),
my_data.get('logging_dir', logging_dir),
my_data.get('train_data_dir', train_data_dir),
my_data.get('reg_data_dir', reg_data_dir),
my_data.get('output_dir', output_dir),
my_data.get('max_resolution', max_resolution),
my_data.get('lr_scheduler', lr_scheduler),
my_data.get('lr_warmup', lr_warmup),
my_data.get('train_batch_size', train_batch_size),
my_data.get('epoch', epoch),
my_data.get('save_every_n_epochs', save_every_n_epochs),
my_data.get('mixed_precision', mixed_precision),
my_data.get('save_precision', save_precision),
my_data.get('seed', seed),
my_data.get(
'num_cpu_threads_per_process', num_cpu_threads_per_process
),
my_data.get('cache_latent', cache_latent),
my_data.get('caption_extention', caption_extention),
my_data.get('enable_bucket', enable_bucket),
my_data.get('gradient_checkpointing', gradient_checkpointing),
my_data.get('full_fp16', full_fp16),
my_data.get('no_token_padding', no_token_padding),
my_data.get('stop_text_encoder_training', stop_text_encoder_training),
my_data.get('use_8bit_adam', use_8bit_adam),
my_data.get('xformers', xformers),
my_data.get('save_model_as', save_model_as),
my_data.get('shuffle_caption', shuffle_caption),
my_data.get('save_state', save_state),
my_data.get('resume', resume),
my_data.get('prior_loss_weight', prior_loss_weight),
my_data.get('text_encoder_lr', text_encoder_lr),
my_data.get('unet_lr', unet_lr),
my_data.get('network_dim', network_dim),
my_data.get('lora_network_weights', lora_network_weights),
my_data.get('color_aug', color_aug),
my_data.get('flip_aug', flip_aug),
my_data.get('clip_skip', clip_skip),
my_data.get('gradient_accumulation_steps', gradient_accumulation_steps),
my_data.get('mem_eff_attn', mem_eff_attn),
# my_data.get('vae', vae),
)
def train_model( def train_model(
@ -296,23 +226,8 @@ def train_model(
clip_skip, clip_skip,
gradient_accumulation_steps, gradient_accumulation_steps,
mem_eff_attn, mem_eff_attn,
# vae, output_name,
): ):
def save_inference_file(output_dir, v2, v_parameterization):
# Copy inference model for v2 if required
if v2 and v_parameterization:
print(f'Saving v2-inference-v.yaml as {output_dir}/last.yaml')
shutil.copy(
f'./v2_inference/v2-inference-v.yaml',
f'{output_dir}/last.yaml',
)
elif v2:
print(f'Saving v2-inference.yaml as {output_dir}/last.yaml')
shutil.copy(
f'./v2_inference/v2-inference.yaml',
f'{output_dir}/last.yaml',
)
if pretrained_model_name_or_path == '': if pretrained_model_name_or_path == '':
msgbox('Source model information is missing') msgbox('Source model information is missing')
return return
@ -379,17 +294,6 @@ def train_model(
# Print the result # Print the result
print(f'Folder {folder}: {steps} steps') print(f'Folder {folder}: {steps} steps')
# Print the result
# print(f"{total_steps} total steps")
# if reg_data_dir == '':
# reg_factor = 1
# else:
# print(
# 'Regularisation images are used... Will double the number of steps required...'
# )
# reg_factor = 2
# calculate max_train_steps # calculate max_train_steps
max_train_steps = int( max_train_steps = int(
math.ceil( math.ceil(
@ -496,68 +400,19 @@ def train_model(
run_cmd += f' --gradient_accumulation_steps={int(gradient_accumulation_steps)}' run_cmd += f' --gradient_accumulation_steps={int(gradient_accumulation_steps)}'
# if not vae == '': # if not vae == '':
# run_cmd += f' --vae="{vae}"' # run_cmd += f' --vae="{vae}"'
if not output_name == '':
run_cmd += f' --output_name="{output_name}"'
print(run_cmd) print(run_cmd)
# Run the command # Run the command
subprocess.run(run_cmd) subprocess.run(run_cmd)
# check if output_dir/last is a folder... therefore it is a diffuser model # check if output_dir/last is a folder... therefore it is a diffuser model
last_dir = pathlib.Path(f'{output_dir}/last') last_dir = pathlib.Path(f'{output_dir}/{output_name}')
if not last_dir.is_dir(): if not last_dir.is_dir():
# Copy inference model for v2 if required # Copy inference model for v2 if required
save_inference_file(output_dir, v2, v_parameterization) save_inference_file(output_dir, v2, v_parameterization, output_name)
def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
# define a list of substrings to search for
substrings_v2 = [
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
if str(value) in substrings_v2:
print('SD v2 model detected. Setting --v2 parameter')
v2 = True
v_parameterization = False
return value, v2, v_parameterization
# define a list of substrings to search for v-objective
substrings_v_parameterization = [
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
if str(value) in substrings_v_parameterization:
print(
'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization'
)
v2 = True
v_parameterization = True
return value, v2, v_parameterization
# define a list of substrings to v1.x
substrings_v1_model = [
'CompVis/stable-diffusion-v1-4',
'runwayml/stable-diffusion-v1-5',
]
if str(value) in substrings_v1_model:
v2 = False
v_parameterization = False
return value, v2, v_parameterization
if value == 'custom':
value = ''
v2 = False
v_parameterization = False
return value, v2, v_parameterization
def UI(username, password): def UI(username, password):
@ -731,6 +586,13 @@ def lora_tab(
logging_dir_input_folder.click( logging_dir_input_folder.click(
get_folder_path, outputs=logging_dir_input get_folder_path, outputs=logging_dir_input
) )
with gr.Row():
output_name = gr.Textbox(
label='Model output name',
placeholder='Name of the model to output',
value='last',
interactive=True,
)
train_data_dir_input.change( train_data_dir_input.change(
remove_doublequote, remove_doublequote,
inputs=[train_data_dir_input], inputs=[train_data_dir_input],
@ -766,7 +628,6 @@ def lora_tab(
outputs=lora_network_weights, outputs=lora_network_weights,
) )
with gr.Row(): with gr.Row():
# learning_rate_input = gr.Textbox(label='Learning rate', value=1e-4, visible=False)
lr_scheduler_input = gr.Dropdown( lr_scheduler_input = gr.Dropdown(
label='LR Scheduler', label='LR Scheduler',
choices=[ choices=[
@ -941,7 +802,6 @@ def lora_tab(
reg_data_dir_input, reg_data_dir_input,
output_dir_input, output_dir_input,
max_resolution_input, max_resolution_input,
# learning_rate_input,
lr_scheduler_input, lr_scheduler_input,
lr_warmup_input, lr_warmup_input,
train_batch_size_input, train_batch_size_input,
@ -974,7 +834,7 @@ def lora_tab(
clip_skip, clip_skip,
gradient_accumulation_steps, gradient_accumulation_steps,
mem_eff_attn, mem_eff_attn,
# vae, output_name,
] ]
button_open_config.click( button_open_config.click(