From f1d53ae3f99576d70ea9aab1ada26e41dafe95bb Mon Sep 17 00:00:00 2001 From: bmaltais Date: Sun, 8 Jan 2023 19:31:44 -0500 Subject: [PATCH] Add resume training and save_state option to finetune UI --- README.md | 3 +++ finetune_gui.py | 28 +++++++++++++++++++++++++++- 2 files changed, 30 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index d5df129..5ed7ea9 100644 --- a/README.md +++ b/README.md @@ -101,6 +101,9 @@ Once you have created the LoRA network you can generate images via auto1111 by i ## Change history +* 2023/01/08 (v19.4.2): + - Add find/replace option to Basic Caption utility + - Add resume training and save_state option to finetune UI * 2023/01/06 (v19.4.1): - Emergency fix for new version of gradio causing issues with drop down menus. Please run `pip install -U -r requirements.txt` to fix the issue after pulling this repo. * 2023/01/06 (v19.4): diff --git a/finetune_gui.py b/finetune_gui.py index 9c8e8a5..76b7298 100644 --- a/finetune_gui.py +++ b/finetune_gui.py @@ -57,6 +57,8 @@ def save_configuration( use_8bit_adam, xformers, clip_skip, + save_state, + resume, ): original_file_path = file_path @@ -111,6 +113,8 @@ def save_configuration( 'use_8bit_adam': use_8bit_adam, 'xformers': xformers, 'clip_skip': clip_skip, + 'save_state': save_state, + 'resume': resume, } # Save the data to the selected file @@ -156,12 +160,14 @@ def open_config_file( use_8bit_adam, xformers, clip_skip, + save_state, + resume, ): original_file_path = file_path file_path = get_file_path(file_path) if file_path != '' and file_path != None: - print(file_path) + print(f'Loading config file {file_path}') # load variables from JSON file with open(file_path, 'r') as f: my_data = json.load(f) @@ -210,6 +216,8 @@ def open_config_file( my_data.get('use_8bit_adam', use_8bit_adam), my_data.get('xformers', xformers), my_data.get('clip_skip', clip_skip), + my_data.get('save_state', save_state), + my_data.get('resume', resume), ) @@ -248,6 +256,8 @@ def train_model( use_8bit_adam, xformers, clip_skip, + save_state, + resume, ): def save_inference_file(output_dir, v2, v_parameterization): # Copy inference model for v2 if required @@ -365,6 +375,10 @@ def train_model( run_cmd += f' --save_model_as={save_model_as}' if int(clip_skip) > 1: run_cmd += f' --clip_skip={str(clip_skip)}' + if save_state: + run_cmd += ' --save_state' + if not resume == '': + run_cmd += f' --resume={resume}' print(run_cmd) # Run the command @@ -698,6 +712,16 @@ def finetune_tab(): clip_skip = gr.Slider( label='Clip skip', value='1', minimum=1, maximum=12, step=1 ) + with gr.Row(): + save_state = gr.Checkbox( + label='Save training state', value=False + ) + resume = gr.Textbox( + label='Resume from saved training state', + placeholder='path to "last-state" state folder to resume from', + ) + resume_button = gr.Button('📂', elem_id='open_folder_small') + resume_button.click(get_folder_path, outputs=resume) with gr.Box(): with gr.Row(): create_caption = gr.Checkbox( @@ -744,6 +768,8 @@ def finetune_tab(): use_8bit_adam, xformers, clip_skip, + save_state, + resume, ] button_run.click(train_model, inputs=settings_list)