- ``lora_interrogator.py`` is added in ``networks`` folder. See ``python networks\lora_interrogator.py -h`` for usage.
- For LoRAs where the activation word is unknown, this script compares the output of Text Encoder after applying LoRA to that of unapplied to find out which token is affected by LoRA. Hopefully you can figure out the activation word. LoRA trained with captions does not seem to be able to interrogate.
- Batch size can be large (like 64 or 128).
- ``train_textual_inversion.py`` now supports multiple init words.
- Following feature is reverted to be the same as before. Sorry for confusion:
> Now the number of data in each batch is limited to the number of actual images (not duplicated). Because a certain bucket may contain smaller number of actual images, so the batch may contain same (duplicated) images.
- Add new tool to sort, group and average crop image in a dataset
- Caption dropout is supported in ``train_db.py``, ``fine_tune.py`` and ``train_network.py``. Thanks to forestsource!
- ``--caption_dropout_rate`` option specifies the dropout rate for captions (0~1.0, 0.1 means 10% chance for dropout). If dropout occurs, the image is trained with the empty caption. Default is 0 (no dropout).
- ``--caption_dropout_every_n_epochs`` option specifies how many epochs to drop captions. If ``3`` is specified, in epoch 3, 6, 9 ..., images are trained with all captions empty. Default is None (no dropout).
- ``--caption_tag_dropout_rate`` option specified the dropout rate for tags (comma separated tokens) (0~1.0, 0.1 means 10% chance for dropout). If dropout occurs, the tag is removed from the caption. If ``--keep_tokens`` option is set, these tokens (tags) are not dropped. Default is 0 (no droupout).
- The bulk image downsampling script is added. Documentation is [here](https://github.com/kohya-ss/sd-scripts/blob/main/train_network_README-ja.md#%E7%94%BB%E5%83%8F%E3%83%AA%E3%82%B5%E3%82%A4%E3%82%BA%E3%82%B9%E3%82%AF%E3%83%AA%E3%83%97%E3%83%88) (in Jpanaese). Thanks to bmaltais!
- Typo check is added. Thanks to shirayu!
- Add option to autolaunch the GUI in a browser and set the server_port. USe either `gui.ps1 --inbrowser --server_port 3456`or `gui.cmd -inbrowser -server_port 3456`
- ``--bucket_reso_steps`` and ``--bucket_no_upscale`` options are added to training scripts (fine tuning, DreamBooth, LoRA and Textual Inversion) and ``prepare_buckets_latents.py``.
- ``--bucket_reso_steps`` takes the steps for buckets in aspect ratio bucketing. Default is 64, same as before.
- Any value greater than or equal to 1 can be specified; 64 is highly recommended and a value divisible by 8 is recommended.
- If less than 64 is specified, padding will occur within U-Net. The result is unknown.
- If you specify a value that is not divisible by 8, it will be truncated to divisible by 8 inside VAE, because the size of the latent is 1/8 of the image size.
- If ``--bucket_no_upscale`` option is specified, images smaller than the bucket size will be processed without upscaling.
- Internally, a bucket smaller than the image size is created (for example, if the image is 300x300 and ``bucket_reso_steps=64``, the bucket is 256x256). The image will be trimmed.
- Implementation of [#130](https://github.com/kohya-ss/sd-scripts/issues/130).
- Images with an area larger than the maximum size specified by ``--resolution`` are downsampled to the max bucket size.
- Now the number of data in each batch is limited to the number of actual images (not duplicated). Because a certain bucket may contain smaller number of actual images, so the batch may contain same (duplicated) images.
- ``--random_crop`` now also works with buckets enabled.
- Instead of always cropping the center of the image, the image is shifted left, right, up, and down to be used as the training data. This is expected to train to the edges of the image.
- Implementation of discussion [#34](https://github.com/kohya-ss/sd-scripts/discussions/34).
- Increase max LoRA rank (dim) size to 1024.
- Update finetune preprocessing scripts.
- ``.bmp`` and ``.jpeg`` are supported. Thanks to breakcore2 and p1atdev!
- The default weights of ``tag_images_by_wd14_tagger.py`` is now ``SmilingWolf/wd-v1-4-convnext-tagger-v2``. You can specify another model id from ``SmilingWolf`` by ``--repo_id`` option. Thanks to SmilingWolf for the great work.
- To change the weight, remove ``wd14_tagger_model`` folder, and run the script again.
- ``--max_data_loader_n_workers`` option is added to each script. This option uses the DataLoader for data loading to speed up loading, 20%~30% faster.
- Please specify 2 or 4, depends on the number of CPU cores.
- ``--recursive`` option is added to ``merge_dd_tags_to_metadata.py`` and ``merge_captions_to_metadata.py``, only works with ``--full_path``.
- ``make_captions_by_git.py`` is added. It uses [GIT microsoft/git-large-textcaps](https://huggingface.co/microsoft/git-large-textcaps) for captioning.
- ``requirements.txt`` is updated. If you use this script, [please update the libraries](https://github.com/kohya-ss/sd-scripts#upgrade).
- Usage is almost the same as ``make_captions.py``, but batch size should be smaller.
- ``--remove_words`` option removes as much text as possible (such as ``the word "XXXX" on it``).
- ``--skip_existing`` option is added to ``prepare_buckets_latents.py``. Images with existing npz files are ignored by this option.
- ``clean_captions_and_tags.py`` is updated to remove duplicated or conflicting tags, e.g. ``shirt`` is removed when ``white shirt`` exists. if ``black hair`` is with ``red hair``, both are removed.
- Tag frequency is added to the metadata in ``train_network.py``. Thanks to space-nuko!
- __All tags and number of occurrences of the tag are recorded.__ If you do not want it, disable metadata storing with ``--no_metadata`` option.