# LoRA network module # reference: # https://github.com/microsoft/LoRA/blob/main/loralib/layers.py # https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py import math import os import torch from library import train_util class LoRAModule(torch.nn.Module): """ replaces forward method of the original Linear, instead of replacing the original Linear module. """ def __init__(self, lora_name, org_module: torch.nn.Module, multiplier=1.0, lora_dim=4, alpha=1): """ if alpha == 0 or None, alpha is rank (no scaling). """ super().__init__() self.lora_name = lora_name self.lora_dim = lora_dim if org_module.__class__.__name__ == 'Conv2d': in_dim = org_module.in_channels out_dim = org_module.out_channels self.lora_down = torch.nn.Conv2d(in_dim, lora_dim, (1, 1), bias=False) self.lora_up = torch.nn.Conv2d(lora_dim, out_dim, (1, 1), bias=False) else: in_dim = org_module.in_features out_dim = org_module.out_features self.lora_down = torch.nn.Linear(in_dim, lora_dim, bias=False) self.lora_up = torch.nn.Linear(lora_dim, out_dim, bias=False) if type(alpha) == torch.Tensor: alpha = alpha.detach().float().numpy() # without casting, bf16 causes error alpha = lora_dim if alpha is None or alpha == 0 else alpha self.scale = alpha / self.lora_dim self.register_buffer('alpha', torch.tensor(alpha)) # 定数として扱える # same as microsoft's torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5)) torch.nn.init.zeros_(self.lora_up.weight) self.multiplier = multiplier self.org_module = org_module # remove in applying def apply_to(self): self.org_forward = self.org_module.forward self.org_module.forward = self.forward del self.org_module def forward(self, x): return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale def create_network(multiplier, network_dim, network_alpha, vae, text_encoder, unet, **kwargs): if network_dim is None: network_dim = 4 # default network = LoRANetwork(text_encoder, unet, multiplier=multiplier, lora_dim=network_dim, alpha=network_alpha) return network def create_network_from_weights(multiplier, file, vae, text_encoder, unet, **kwargs): if os.path.splitext(file)[1] == '.safetensors': from safetensors.torch import load_file, safe_open weights_sd = load_file(file) else: weights_sd = torch.load(file, map_location='cpu') # get dim (rank) network_alpha = None network_dim = None for key, value in weights_sd.items(): if network_alpha is None and 'alpha' in key: network_alpha = value if network_dim is None and 'lora_down' in key and len(value.size()) == 2: network_dim = value.size()[0] if network_alpha is None: network_alpha = network_dim network = LoRANetwork(text_encoder, unet, multiplier=multiplier, lora_dim=network_dim, alpha=network_alpha) network.weights_sd = weights_sd return network class LoRANetwork(torch.nn.Module): UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "Attention"] TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"] LORA_PREFIX_UNET = 'lora_unet' LORA_PREFIX_TEXT_ENCODER = 'lora_te' def __init__(self, text_encoder, unet, multiplier=1.0, lora_dim=4, alpha=1) -> None: super().__init__() self.multiplier = multiplier self.lora_dim = lora_dim self.alpha = alpha # create module instances def create_modules(prefix, root_module: torch.nn.Module, target_replace_modules) -> list[LoRAModule]: loras = [] for name, module in root_module.named_modules(): if module.__class__.__name__ in target_replace_modules: for child_name, child_module in module.named_modules(): if child_module.__class__.__name__ == "Linear" or (child_module.__class__.__name__ == "Conv2d" and child_module.kernel_size == (1, 1)): lora_name = prefix + '.' + name + '.' + child_name lora_name = lora_name.replace('.', '_') lora = LoRAModule(lora_name, child_module, self.multiplier, self.lora_dim, self.alpha) loras.append(lora) return loras self.text_encoder_loras = create_modules(LoRANetwork.LORA_PREFIX_TEXT_ENCODER, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE) print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.") self.unet_loras = create_modules(LoRANetwork.LORA_PREFIX_UNET, unet, LoRANetwork.UNET_TARGET_REPLACE_MODULE) print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.") self.weights_sd = None # assertion names = set() for lora in self.text_encoder_loras + self.unet_loras: assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}" names.add(lora.lora_name) def load_weights(self, file): if os.path.splitext(file)[1] == '.safetensors': from safetensors.torch import load_file, safe_open self.weights_sd = load_file(file) else: self.weights_sd = torch.load(file, map_location='cpu') def apply_to(self, text_encoder, unet, apply_text_encoder=None, apply_unet=None): if self.weights_sd: weights_has_text_encoder = weights_has_unet = False for key in self.weights_sd.keys(): if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER): weights_has_text_encoder = True elif key.startswith(LoRANetwork.LORA_PREFIX_UNET): weights_has_unet = True if apply_text_encoder is None: apply_text_encoder = weights_has_text_encoder else: assert apply_text_encoder == weights_has_text_encoder, f"text encoder weights: {weights_has_text_encoder} but text encoder flag: {apply_text_encoder} / 重みとText Encoderのフラグが矛盾しています" if apply_unet is None: apply_unet = weights_has_unet else: assert apply_unet == weights_has_unet, f"u-net weights: {weights_has_unet} but u-net flag: {apply_unet} / 重みとU-Netのフラグが矛盾しています" else: assert apply_text_encoder is not None and apply_unet is not None, f"internal error: flag not set" if apply_text_encoder: print("enable LoRA for text encoder") else: self.text_encoder_loras = [] if apply_unet: print("enable LoRA for U-Net") else: self.unet_loras = [] for lora in self.text_encoder_loras + self.unet_loras: lora.apply_to() self.add_module(lora.lora_name, lora) if self.weights_sd: # if some weights are not in state dict, it is ok because initial LoRA does nothing (lora_up is initialized by zeros) info = self.load_state_dict(self.weights_sd, False) print(f"weights are loaded: {info}") def enable_gradient_checkpointing(self): # not supported pass def prepare_optimizer_params(self, text_encoder_lr, unet_lr): def enumerate_params(loras): params = [] for lora in loras: params.extend(lora.parameters()) return params self.requires_grad_(True) all_params = [] if self.text_encoder_loras: param_data = {'params': enumerate_params(self.text_encoder_loras)} if text_encoder_lr is not None: param_data['lr'] = text_encoder_lr all_params.append(param_data) if self.unet_loras: param_data = {'params': enumerate_params(self.unet_loras)} if unet_lr is not None: param_data['lr'] = unet_lr all_params.append(param_data) return all_params def prepare_grad_etc(self, text_encoder, unet): self.requires_grad_(True) def on_epoch_start(self, text_encoder, unet): self.train() def get_trainable_params(self): return self.parameters() def save_weights(self, file, dtype, metadata): if metadata is not None and len(metadata) == 0: metadata = None state_dict = self.state_dict() if dtype is not None: for key in list(state_dict.keys()): v = state_dict[key] v = v.detach().clone().to("cpu").to(dtype) state_dict[key] = v if os.path.splitext(file)[1] == '.safetensors': from safetensors.torch import save_file # Precalculate model hashes to save time on indexing if metadata is None: metadata = {} model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata) metadata["sshs_model_hash"] = model_hash metadata["sshs_legacy_hash"] = legacy_hash save_file(state_dict, file, metadata) else: torch.save(state_dict, file)