# Convert LoRA to different rank approximation (should only be used to go to lower rank) # This code is based off the extract_lora_from_models.py file which is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py # Thanks to cloneofsimo and kohya import argparse import os import torch from safetensors.torch import load_file, save_file, safe_open from tqdm import tqdm from library import train_util, model_util def load_state_dict(file_name, dtype): if model_util.is_safetensors(file_name): sd = load_file(file_name) with safe_open(file_name, framework="pt") as f: metadata = f.metadata() else: sd = torch.load(file_name, map_location='cpu') metadata = None for key in list(sd.keys()): if type(sd[key]) == torch.Tensor: sd[key] = sd[key].to(dtype) return sd, metadata def save_to_file(file_name, model, state_dict, dtype, metadata): if dtype is not None: for key in list(state_dict.keys()): if type(state_dict[key]) == torch.Tensor: state_dict[key] = state_dict[key].to(dtype) if model_util.is_safetensors(file_name): save_file(model, file_name, metadata) else: torch.save(model, file_name) def resize_lora_model(lora_sd, new_rank, save_dtype, device, verbose): network_alpha = None network_dim = None verbose_str = "\n" CLAMP_QUANTILE = 0.99 # Extract loaded lora dim and alpha for key, value in lora_sd.items(): if network_alpha is None and 'alpha' in key: network_alpha = value if network_dim is None and 'lora_down' in key and len(value.size()) == 2: network_dim = value.size()[0] if network_alpha is not None and network_dim is not None: break if network_alpha is None: network_alpha = network_dim scale = network_alpha/network_dim new_alpha = float(scale*new_rank) # calculate new alpha from scale print(f"old dimension: {network_dim}, old alpha: {network_alpha}, new alpha: {new_alpha}") lora_down_weight = None lora_up_weight = None o_lora_sd = lora_sd.copy() block_down_name = None block_up_name = None print("resizing lora...") with torch.no_grad(): for key, value in tqdm(lora_sd.items()): if 'lora_down' in key: block_down_name = key.split(".")[0] lora_down_weight = value if 'lora_up' in key: block_up_name = key.split(".")[0] lora_up_weight = value weights_loaded = (lora_down_weight is not None and lora_up_weight is not None) if (block_down_name == block_up_name) and weights_loaded: conv2d = (len(lora_down_weight.size()) == 4) if conv2d: lora_down_weight = lora_down_weight.squeeze() lora_up_weight = lora_up_weight.squeeze() if device: org_device = lora_up_weight.device lora_up_weight = lora_up_weight.to(args.device) lora_down_weight = lora_down_weight.to(args.device) full_weight_matrix = torch.matmul(lora_up_weight, lora_down_weight) U, S, Vh = torch.linalg.svd(full_weight_matrix) if verbose: s_sum = torch.sum(torch.abs(S)) s_rank = torch.sum(torch.abs(S[:new_rank])) verbose_str+=f"{block_down_name:76} | " verbose_str+=f"sum(S) retained: {(s_rank)/s_sum:.1%}, max(S) ratio: {S[0]/S[new_rank]:0.1f}\n" U = U[:, :new_rank] S = S[:new_rank] U = U @ torch.diag(S) Vh = Vh[:new_rank, :] dist = torch.cat([U.flatten(), Vh.flatten()]) hi_val = torch.quantile(dist, CLAMP_QUANTILE) low_val = -hi_val U = U.clamp(low_val, hi_val) Vh = Vh.clamp(low_val, hi_val) if conv2d: U = U.unsqueeze(2).unsqueeze(3) Vh = Vh.unsqueeze(2).unsqueeze(3) if device: U = U.to(org_device) Vh = Vh.to(org_device) o_lora_sd[block_down_name + "." + "lora_down.weight"] = Vh.to(save_dtype).contiguous() o_lora_sd[block_up_name + "." + "lora_up.weight"] = U.to(save_dtype).contiguous() o_lora_sd[block_up_name + "." "alpha"] = torch.tensor(new_alpha).to(save_dtype) block_down_name = None block_up_name = None lora_down_weight = None lora_up_weight = None weights_loaded = False if verbose: print(verbose_str) print("resizing complete") return o_lora_sd, network_dim, new_alpha def resize(args): def str_to_dtype(p): if p == 'float': return torch.float if p == 'fp16': return torch.float16 if p == 'bf16': return torch.bfloat16 return None merge_dtype = str_to_dtype('float') # matmul method above only seems to work in float32 save_dtype = str_to_dtype(args.save_precision) if save_dtype is None: save_dtype = merge_dtype print("loading Model...") lora_sd, metadata = load_state_dict(args.model, merge_dtype) print("resizing rank...") state_dict, old_dim, new_alpha = resize_lora_model(lora_sd, args.new_rank, save_dtype, args.device, args.verbose) # update metadata if metadata is None: metadata = {} comment = metadata.get("ss_training_comment", "") metadata["ss_training_comment"] = f"dimension is resized from {old_dim} to {args.new_rank}; {comment}" metadata["ss_network_dim"] = str(args.new_rank) metadata["ss_network_alpha"] = str(new_alpha) model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata) metadata["sshs_model_hash"] = model_hash metadata["sshs_legacy_hash"] = legacy_hash print(f"saving model to: {args.save_to}") save_to_file(args.save_to, state_dict, state_dict, save_dtype, metadata) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--save_precision", type=str, default=None, choices=[None, "float", "fp16", "bf16"], help="precision in saving, float if omitted / 保存時の精度、未指定時はfloat") parser.add_argument("--new_rank", type=int, default=4, help="Specify rank of output LoRA / 出力するLoRAのrank (dim)") parser.add_argument("--save_to", type=str, default=None, help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors") parser.add_argument("--model", type=str, default=None, help="LoRA model to resize at to new rank: ckpt or safetensors file / 読み込むLoRAモデル、ckptまたはsafetensors") parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う") parser.add_argument("--verbose", action="store_true", help="Display verbose resizing information / rank変更時の詳細情報を出力する") args = parser.parse_args() resize(args)