# このスクリプトのライセンスは、train_dreambooth.pyと同じくApache License 2.0とします # (c) 2022 Kohya S. @kohya_ss # v7: another text encoder ckpt format, average loss, save epochs/global steps, show num of train/reg images, # enable reg images in fine-tuning, add dataset_repeats option # v8: supports Diffusers 0.7.2 # v9: add bucketing option # v10: add min_bucket_reso/max_bucket_reso options, read captions for train/reg images in DreamBooth import time from torch.autograd.function import Function import argparse import glob import itertools import math import os import random from tqdm import tqdm import torch from torchvision import transforms from accelerate import Accelerator from accelerate.utils import set_seed from transformers import CLIPTextModel, CLIPTokenizer import diffusers from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel import albumentations as albu import numpy as np from PIL import Image import cv2 from einops import rearrange from torch import einsum # Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う TOKENIZER_PATH = "openai/clip-vit-large-patch14" # StableDiffusionのモデルパラメータ NUM_TRAIN_TIMESTEPS = 1000 BETA_START = 0.00085 BETA_END = 0.0120 UNET_PARAMS_MODEL_CHANNELS = 320 UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4] UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1] UNET_PARAMS_IMAGE_SIZE = 32 # unused UNET_PARAMS_IN_CHANNELS = 4 UNET_PARAMS_OUT_CHANNELS = 4 UNET_PARAMS_NUM_RES_BLOCKS = 2 UNET_PARAMS_CONTEXT_DIM = 768 UNET_PARAMS_NUM_HEADS = 8 VAE_PARAMS_Z_CHANNELS = 4 VAE_PARAMS_RESOLUTION = 256 VAE_PARAMS_IN_CHANNELS = 3 VAE_PARAMS_OUT_CH = 3 VAE_PARAMS_CH = 128 VAE_PARAMS_CH_MULT = [1, 2, 4, 4] VAE_PARAMS_NUM_RES_BLOCKS = 2 # checkpointファイル名 LAST_CHECKPOINT_NAME = "last.ckpt" LAST_STATE_NAME = "last-state" EPOCH_CHECKPOINT_NAME = "epoch-{:06d}.ckpt" EPOCH_STATE_NAME = "epoch-{:06d}-state" def make_bucket_resolutions(max_reso, min_size=256, max_size=1024, divisible=64): max_width, max_height = max_reso max_area = (max_width // divisible) * (max_height // divisible) resos = set() size = int(math.sqrt(max_area)) * divisible resos.add((size, size)) size = min_size while size <= max_size: width = size height = min(max_size, (max_area // (width // divisible)) * divisible) resos.add((width, height)) resos.add((height, width)) size += divisible resos = list(resos) resos.sort() aspect_ratios = [w / h for w, h in resos] return resos, aspect_ratios class DreamBoothOrFineTuningDataset(torch.utils.data.Dataset): def __init__(self, batch_size, fine_tuning, train_img_path_captions, reg_img_path_captions, tokenizer, resolution, prior_loss_weight, flip_aug, color_aug, face_crop_aug_range, random_crop, shuffle_caption, disable_padding, debug_dataset) -> None: super().__init__() self.batch_size = batch_size self.fine_tuning = fine_tuning self.train_img_path_captions = train_img_path_captions self.reg_img_path_captions = reg_img_path_captions self.tokenizer = tokenizer self.width, self.height = resolution self.size = min(self.width, self.height) # 短いほう self.prior_loss_weight = prior_loss_weight self.face_crop_aug_range = face_crop_aug_range self.random_crop = random_crop self.debug_dataset = debug_dataset self.shuffle_caption = shuffle_caption self.disable_padding = disable_padding self.latents_cache = None self.enable_bucket = False # augmentation flip_p = 0.5 if flip_aug else 0.0 if color_aug: # わりと弱めの色合いaugmentation:brightness/contrastあたりは画像のpixel valueの最大値・最小値を変えてしまうのでよくないのではという想定でgamma/hue/saturationあたりを触る self.aug = albu.Compose([ albu.OneOf([ # albu.RandomBrightnessContrast(0.05, 0.05, p=.2), albu.HueSaturationValue(5, 8, 0, p=.2), # albu.RGBShift(5, 5, 5, p=.1), albu.RandomGamma((95, 105), p=.5), ], p=.33), albu.HorizontalFlip(p=flip_p) ], p=1.) elif flip_aug: self.aug = albu.Compose([ albu.HorizontalFlip(p=flip_p) ], p=1.) else: self.aug = None self.num_train_images = len(self.train_img_path_captions) self.num_reg_images = len(self.reg_img_path_captions) self.enable_reg_images = self.num_reg_images > 0 if self.enable_reg_images and self.num_train_images < self.num_reg_images: print("some of reg images are not used / 正則化画像の数が多いので、一部使用されない正則化画像があります") self.image_transforms = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) # bucketingを行わない場合も呼び出し必須(ひとつだけbucketを作る) def make_buckets_with_caching(self, enable_bucket, vae, min_size, max_size): self.enable_bucket = enable_bucket cache_latents = vae is not None if cache_latents: if enable_bucket: print("cache latents with bucketing") else: print("cache latents") else: if enable_bucket: print("make buckets") else: print("prepare dataset") # bucketingを用意する if enable_bucket: bucket_resos, bucket_aspect_ratios = make_bucket_resolutions((self.width, self.height), min_size, max_size) else: # bucketはひとつだけ、すべての画像は同じ解像度 bucket_resos = [(self.width, self.height)] bucket_aspect_ratios = [self.width / self.height] bucket_aspect_ratios = np.array(bucket_aspect_ratios) # 画像の解像度、latentをあらかじめ取得する img_ar_errors = [] self.size_lat_cache = {} for image_path, _ in tqdm(self.train_img_path_captions + self.reg_img_path_captions): if image_path in self.size_lat_cache: continue image = self.load_image(image_path)[0] image_height, image_width = image.shape[0:2] if not enable_bucket: # assert image_width == self.width and image_height == self.height, \ # f"all images must have specific resolution when bucketing is disabled / bucketを使わない場合、すべての画像のサイズを統一してください: {image_path}" reso = (self.width, self.height) else: # bucketを決める aspect_ratio = image_width / image_height ar_errors = bucket_aspect_ratios - aspect_ratio bucket_id = np.abs(ar_errors).argmin() reso = bucket_resos[bucket_id] ar_error = ar_errors[bucket_id] img_ar_errors.append(ar_error) if cache_latents: image = self.resize_and_trim(image, reso) # latentを取得する if cache_latents: img_tensor = self.image_transforms(image) img_tensor = img_tensor.unsqueeze(0).to(device=vae.device, dtype=vae.dtype) latents = vae.encode(img_tensor).latent_dist.sample().squeeze(0).to("cpu") else: latents = None self.size_lat_cache[image_path] = (reso, latents) # 画像をbucketに分割する self.buckets = [[] for _ in range(len(bucket_resos))] reso_to_index = {} for i, reso in enumerate(bucket_resos): reso_to_index[reso] = i def split_to_buckets(is_reg, img_path_captions): for image_path, caption in img_path_captions: reso, _ = self.size_lat_cache[image_path] bucket_index = reso_to_index[reso] self.buckets[bucket_index].append((is_reg, image_path, caption)) split_to_buckets(False, self.train_img_path_captions) if self.enable_reg_images: l = [] while len(l) < len(self.train_img_path_captions): l += self.reg_img_path_captions l = l[:len(self.train_img_path_captions)] split_to_buckets(True, l) if enable_bucket: print("number of images with repeats / 繰り返し回数込みの各bucketの画像枚数") for i, (reso, imgs) in enumerate(zip(bucket_resos, self.buckets)): print(f"bucket {i}: resolution {reso}, count: {len(imgs)}") img_ar_errors = np.array(img_ar_errors) print(f"mean ar error: {np.mean(np.abs(img_ar_errors))}") # 参照用indexを作る self.buckets_indices = [] for bucket_index, bucket in enumerate(self.buckets): batch_count = int(math.ceil(len(bucket) / self.batch_size)) for batch_index in range(batch_count): self.buckets_indices.append((bucket_index, batch_index)) self.shuffle_buckets() self._length = len(self.buckets_indices) # どのサイズにリサイズするか→トリミングする方向で def resize_and_trim(self, image, reso): image_height, image_width = image.shape[0:2] ar_img = image_width / image_height ar_reso = reso[0] / reso[1] if ar_img > ar_reso: # 横が長い→縦を合わせる scale = reso[1] / image_height else: scale = reso[0] / image_width resized_size = (int(image_width * scale + .5), int(image_height * scale + .5)) image = cv2.resize(image, resized_size, interpolation=cv2.INTER_AREA) # INTER_AREAでやりたいのでcv2でリサイズ if resized_size[0] > reso[0]: trim_size = resized_size[0] - reso[0] image = image[:, trim_size//2:trim_size//2 + reso[0]] elif resized_size[1] > reso[1]: trim_size = resized_size[1] - reso[1] image = image[trim_size//2:trim_size//2 + reso[1]] assert image.shape[0] == reso[1] and image.shape[1] == reso[0], \ f"internal error, illegal trimmed size: {image.shape}, {reso}" return image def shuffle_buckets(self): random.shuffle(self.buckets_indices) for bucket in self.buckets: random.shuffle(bucket) def load_image(self, image_path): image = Image.open(image_path) if not image.mode == "RGB": image = image.convert("RGB") img = np.array(image, np.uint8) face_cx = face_cy = face_w = face_h = 0 if self.face_crop_aug_range is not None: tokens = os.path.splitext(os.path.basename(image_path))[0].split('_') if len(tokens) >= 5: face_cx = int(tokens[-4]) face_cy = int(tokens[-3]) face_w = int(tokens[-2]) face_h = int(tokens[-1]) return img, face_cx, face_cy, face_w, face_h # いい感じに切り出す def crop_target(self, image, face_cx, face_cy, face_w, face_h): height, width = image.shape[0:2] if height == self.height and width == self.width: return image # 画像サイズはsizeより大きいのでリサイズする face_size = max(face_w, face_h) min_scale = max(self.height / height, self.width / width) # 画像がモデル入力サイズぴったりになる倍率(最小の倍率) min_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[1]))) # 指定した顔最小サイズ max_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[0]))) # 指定した顔最大サイズ if min_scale >= max_scale: # range指定がmin==max scale = min_scale else: scale = random.uniform(min_scale, max_scale) nh = int(height * scale + .5) nw = int(width * scale + .5) assert nh >= self.height and nw >= self.width, f"internal error. small scale {scale}, {width}*{height}" image = cv2.resize(image, (nw, nh), interpolation=cv2.INTER_AREA) face_cx = int(face_cx * scale + .5) face_cy = int(face_cy * scale + .5) height, width = nh, nw # 顔を中心として448*640とかへを切り出す for axis, (target_size, length, face_p) in enumerate(zip((self.height, self.width), (height, width), (face_cy, face_cx))): p1 = face_p - target_size // 2 # 顔を中心に持ってくるための切り出し位置 if self.random_crop: # 背景も含めるために顔を中心に置く確率を高めつつずらす range = max(length - face_p, face_p) # 画像の端から顔中心までの距離の長いほう p1 = p1 + (random.randint(0, range) + random.randint(0, range)) - range # -range ~ +range までのいい感じの乱数 else: # range指定があるときのみ、すこしだけランダムに(わりと適当) if self.face_crop_aug_range[0] != self.face_crop_aug_range[1]: if face_size > self.size // 10 and face_size >= 40: p1 = p1 + random.randint(-face_size // 20, +face_size // 20) p1 = max(0, min(p1, length - target_size)) if axis == 0: image = image[p1:p1 + target_size, :] else: image = image[:, p1:p1 + target_size] return image def __len__(self): return self._length def __getitem__(self, index): if index == 0: self.shuffle_buckets() bucket = self.buckets[self.buckets_indices[index][0]] image_index = self.buckets_indices[index][1] * self.batch_size latents_list = [] images = [] captions = [] loss_weights = [] for is_reg, image_path, caption in bucket[image_index:image_index + self.batch_size]: loss_weights.append(1.0 if is_reg else self.prior_loss_weight) # image/latentsを処理する reso, latents = self.size_lat_cache[image_path] if latents is None: # 画像を読み込み必要ならcropする img, face_cx, face_cy, face_w, face_h = self.load_image(image_path) im_h, im_w = img.shape[0:2] if self.enable_bucket: img = self.resize_and_trim(img, reso) else: if face_cx > 0: # 顔位置情報あり img = self.crop_target(img, face_cx, face_cy, face_w, face_h) elif im_h > self.height or im_w > self.width: assert self.random_crop, f"image too large, and face_crop_aug_range and random_crop are disabled / 画像サイズが大きいのでface_crop_aug_rangeかrandom_cropを有効にしてください" if im_h > self.height: p = random.randint(0, im_h - self.height) img = img[p:p + self.height] if im_w > self.width: p = random.randint(0, im_w - self.width) img = img[:, p:p + self.width] im_h, im_w = img.shape[0:2] assert im_h == self.height and im_w == self.width, f"image size is small / 画像サイズが小さいようです: {image_path}" # augmentation if self.aug is not None: img = self.aug(image=img)['image'] image = self.image_transforms(img) # -1.0~1.0のtorch.Tensorになる else: image = None images.append(image) latents_list.append(latents) # captionを処理する if self.shuffle_caption: # captionのshuffleをする tokens = caption.strip().split(",") random.shuffle(tokens) caption = ",".join(tokens).strip() captions.append(caption) # input_idsをpadしてTensor変換 if self.disable_padding: # paddingしない:padding==Trueはバッチの中の最大長に合わせるだけ(やはりバグでは……?) input_ids = self.tokenizer(captions, padding=True, truncation=True, return_tensors="pt").input_ids else: # paddingする input_ids = self.tokenizer(captions, padding='max_length', truncation=True, return_tensors='pt').input_ids example = {} example['loss_weights'] = torch.FloatTensor(loss_weights) example['input_ids'] = input_ids if images[0] is not None: images = torch.stack(images) images = images.to(memory_format=torch.contiguous_format).float() else: images = None example['images'] = images example['latents'] = torch.stack(latents_list) if latents_list[0] is not None else None if self.debug_dataset: example['image_paths'] = [image_path for _, image_path, _ in bucket[image_index:image_index + self.batch_size]] example['captions'] = captions return example # region checkpoint変換、読み込み、書き込み ############################### # region StableDiffusion->Diffusersの変換コード # convert_original_stable_diffusion_to_diffusers をコピーしている(ASL 2.0) def shave_segments(path, n_shave_prefix_segments=1): """ Removes segments. Positive values shave the first segments, negative shave the last segments. """ if n_shave_prefix_segments >= 0: return ".".join(path.split(".")[n_shave_prefix_segments:]) else: return ".".join(path.split(".")[:n_shave_prefix_segments]) def renew_resnet_paths(old_list, n_shave_prefix_segments=0): """ Updates paths inside resnets to the new naming scheme (local renaming) """ mapping = [] for old_item in old_list: new_item = old_item.replace("in_layers.0", "norm1") new_item = new_item.replace("in_layers.2", "conv1") new_item = new_item.replace("out_layers.0", "norm2") new_item = new_item.replace("out_layers.3", "conv2") new_item = new_item.replace("emb_layers.1", "time_emb_proj") new_item = new_item.replace("skip_connection", "conv_shortcut") new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) mapping.append({"old": old_item, "new": new_item}) return mapping def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): """ Updates paths inside resnets to the new naming scheme (local renaming) """ mapping = [] for old_item in old_list: new_item = old_item new_item = new_item.replace("nin_shortcut", "conv_shortcut") new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) mapping.append({"old": old_item, "new": new_item}) return mapping def renew_attention_paths(old_list, n_shave_prefix_segments=0): """ Updates paths inside attentions to the new naming scheme (local renaming) """ mapping = [] for old_item in old_list: new_item = old_item # new_item = new_item.replace('norm.weight', 'group_norm.weight') # new_item = new_item.replace('norm.bias', 'group_norm.bias') # new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') # new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') # new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) mapping.append({"old": old_item, "new": new_item}) return mapping def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): """ Updates paths inside attentions to the new naming scheme (local renaming) """ mapping = [] for old_item in old_list: new_item = old_item new_item = new_item.replace("norm.weight", "group_norm.weight") new_item = new_item.replace("norm.bias", "group_norm.bias") new_item = new_item.replace("q.weight", "query.weight") new_item = new_item.replace("q.bias", "query.bias") new_item = new_item.replace("k.weight", "key.weight") new_item = new_item.replace("k.bias", "key.bias") new_item = new_item.replace("v.weight", "value.weight") new_item = new_item.replace("v.bias", "value.bias") new_item = new_item.replace("proj_out.weight", "proj_attn.weight") new_item = new_item.replace("proj_out.bias", "proj_attn.bias") new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) mapping.append({"old": old_item, "new": new_item}) return mapping def assign_to_checkpoint( paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None ): """ This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits attention layers, and takes into account additional replacements that may arise. Assigns the weights to the new checkpoint. """ assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): old_tensor = old_checkpoint[path] channels = old_tensor.shape[0] // 3 target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) query, key, value = old_tensor.split(channels // num_heads, dim=1) checkpoint[path_map["query"]] = query.reshape(target_shape) checkpoint[path_map["key"]] = key.reshape(target_shape) checkpoint[path_map["value"]] = value.reshape(target_shape) for path in paths: new_path = path["new"] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") if additional_replacements is not None: for replacement in additional_replacements: new_path = new_path.replace(replacement["old"], replacement["new"]) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] else: checkpoint[new_path] = old_checkpoint[path["old"]] def conv_attn_to_linear(checkpoint): keys = list(checkpoint.keys()) attn_keys = ["query.weight", "key.weight", "value.weight"] for key in keys: if ".".join(key.split(".")[-2:]) in attn_keys: if checkpoint[key].ndim > 2: checkpoint[key] = checkpoint[key][:, :, 0, 0] elif "proj_attn.weight" in key: if checkpoint[key].ndim > 2: checkpoint[key] = checkpoint[key][:, :, 0] def convert_ldm_unet_checkpoint(checkpoint, config): """ Takes a state dict and a config, and returns a converted checkpoint. """ # extract state_dict for UNet unet_state_dict = {} unet_key = "model.diffusion_model." keys = list(checkpoint.keys()) for key in keys: if key.startswith(unet_key): unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) new_checkpoint = {} new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] # Retrieves the keys for the input blocks only num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) input_blocks = { layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] for layer_id in range(num_input_blocks) } # Retrieves the keys for the middle blocks only num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) middle_blocks = { layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] for layer_id in range(num_middle_blocks) } # Retrieves the keys for the output blocks only num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) output_blocks = { layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] for layer_id in range(num_output_blocks) } for i in range(1, num_input_blocks): block_id = (i - 1) // (config["layers_per_block"] + 1) layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) resnets = [ key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key ] attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] if f"input_blocks.{i}.0.op.weight" in unet_state_dict: new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( f"input_blocks.{i}.0.op.weight" ) new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( f"input_blocks.{i}.0.op.bias" ) paths = renew_resnet_paths(resnets) meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint( paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config ) if len(attentions): paths = renew_attention_paths(attentions) meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} assign_to_checkpoint( paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config ) resnet_0 = middle_blocks[0] attentions = middle_blocks[1] resnet_1 = middle_blocks[2] resnet_0_paths = renew_resnet_paths(resnet_0) assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) resnet_1_paths = renew_resnet_paths(resnet_1) assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) attentions_paths = renew_attention_paths(attentions) meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} assign_to_checkpoint( attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config ) for i in range(num_output_blocks): block_id = i // (config["layers_per_block"] + 1) layer_in_block_id = i % (config["layers_per_block"] + 1) output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] output_block_list = {} for layer in output_block_layers: layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) if layer_id in output_block_list: output_block_list[layer_id].append(layer_name) else: output_block_list[layer_id] = [layer_name] if len(output_block_list) > 1: resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] resnet_0_paths = renew_resnet_paths(resnets) paths = renew_resnet_paths(resnets) meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint( paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config ) if ["conv.weight", "conv.bias"] in output_block_list.values(): index = list(output_block_list.values()).index(["conv.weight", "conv.bias"]) new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ f"output_blocks.{i}.{index}.conv.weight" ] new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ f"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(attentions) == 2: attentions = [] if len(attentions): paths = renew_attention_paths(attentions) meta_path = { "old": f"output_blocks.{i}.1", "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", } assign_to_checkpoint( paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config ) else: resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) for path in resnet_0_paths: old_path = ".".join(["output_blocks", str(i), path["old"]]) new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) new_checkpoint[new_path] = unet_state_dict[old_path] return new_checkpoint def convert_ldm_vae_checkpoint(checkpoint, config): # extract state dict for VAE vae_state_dict = {} vae_key = "first_stage_model." keys = list(checkpoint.keys()) for key in keys: if key.startswith(vae_key): vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) new_checkpoint = {} new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) down_blocks = { layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) } # Retrieves the keys for the decoder up blocks only num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) up_blocks = { layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) } for i in range(num_down_blocks): resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.weight" ) new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.bias" ) paths = renew_vae_resnet_paths(resnets) meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] num_mid_res_blocks = 2 for i in range(1, num_mid_res_blocks + 1): resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] paths = renew_vae_resnet_paths(resnets) meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] paths = renew_vae_attention_paths(mid_attentions) meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) conv_attn_to_linear(new_checkpoint) for i in range(num_up_blocks): block_id = num_up_blocks - 1 - i resnets = [ key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key ] if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.weight" ] new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.bias" ] paths = renew_vae_resnet_paths(resnets) meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] num_mid_res_blocks = 2 for i in range(1, num_mid_res_blocks + 1): resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] paths = renew_vae_resnet_paths(resnets) meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] paths = renew_vae_attention_paths(mid_attentions) meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) conv_attn_to_linear(new_checkpoint) return new_checkpoint def create_unet_diffusers_config(): """ Creates a config for the diffusers based on the config of the LDM model. """ # unet_params = original_config.model.params.unet_config.params block_out_channels = [UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT] down_block_types = [] resolution = 1 for i in range(len(block_out_channels)): block_type = "CrossAttnDownBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "DownBlock2D" down_block_types.append(block_type) if i != len(block_out_channels) - 1: resolution *= 2 up_block_types = [] for i in range(len(block_out_channels)): block_type = "CrossAttnUpBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "UpBlock2D" up_block_types.append(block_type) resolution //= 2 config = dict( sample_size=UNET_PARAMS_IMAGE_SIZE, in_channels=UNET_PARAMS_IN_CHANNELS, out_channels=UNET_PARAMS_OUT_CHANNELS, down_block_types=tuple(down_block_types), up_block_types=tuple(up_block_types), block_out_channels=tuple(block_out_channels), layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS, cross_attention_dim=UNET_PARAMS_CONTEXT_DIM, attention_head_dim=UNET_PARAMS_NUM_HEADS, ) return config def create_vae_diffusers_config(): """ Creates a config for the diffusers based on the config of the LDM model. """ # vae_params = original_config.model.params.first_stage_config.params.ddconfig # _ = original_config.model.params.first_stage_config.params.embed_dim block_out_channels = [VAE_PARAMS_CH * mult for mult in VAE_PARAMS_CH_MULT] down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) config = dict( sample_size=VAE_PARAMS_RESOLUTION, in_channels=VAE_PARAMS_IN_CHANNELS, out_channels=VAE_PARAMS_OUT_CH, down_block_types=tuple(down_block_types), up_block_types=tuple(up_block_types), block_out_channels=tuple(block_out_channels), latent_channels=VAE_PARAMS_Z_CHANNELS, layers_per_block=VAE_PARAMS_NUM_RES_BLOCKS, ) return config def convert_ldm_clip_checkpoint(checkpoint): text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") keys = list(checkpoint.keys()) text_model_dict = {} for key in keys: if key.startswith("cond_stage_model.transformer"): text_model_dict[key[len("cond_stage_model.transformer."):]] = checkpoint[key] text_model.load_state_dict(text_model_dict) return text_model # endregion # region Diffusers->StableDiffusion の変換コード # convert_diffusers_to_original_stable_diffusion をコピーしている(ASL 2.0) def convert_unet_state_dict(unet_state_dict): unet_conversion_map = [ # (stable-diffusion, HF Diffusers) ("time_embed.0.weight", "time_embedding.linear_1.weight"), ("time_embed.0.bias", "time_embedding.linear_1.bias"), ("time_embed.2.weight", "time_embedding.linear_2.weight"), ("time_embed.2.bias", "time_embedding.linear_2.bias"), ("input_blocks.0.0.weight", "conv_in.weight"), ("input_blocks.0.0.bias", "conv_in.bias"), ("out.0.weight", "conv_norm_out.weight"), ("out.0.bias", "conv_norm_out.bias"), ("out.2.weight", "conv_out.weight"), ("out.2.bias", "conv_out.bias"), ] unet_conversion_map_resnet = [ # (stable-diffusion, HF Diffusers) ("in_layers.0", "norm1"), ("in_layers.2", "conv1"), ("out_layers.0", "norm2"), ("out_layers.3", "conv2"), ("emb_layers.1", "time_emb_proj"), ("skip_connection", "conv_shortcut"), ] unet_conversion_map_layer = [] for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." sd_up_res_prefix = f"output_blocks.{3*i + j}.0." unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) hf_mid_atn_prefix = "mid_block.attentions.0." sd_mid_atn_prefix = "middle_block.1." unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): hf_mid_res_prefix = f"mid_block.resnets.{j}." sd_mid_res_prefix = f"middle_block.{2*j}." unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. mapping = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: mapping[hf_name] = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: v = v.replace(hf_part, sd_part) mapping[k] = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: v = v.replace(hf_part, sd_part) mapping[k] = v new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # endregion def load_checkpoint_with_conversion(ckpt_path): # text encoderの格納形式が違うモデルに対応する ('text_model'がない) TEXT_ENCODER_KEY_REPLACEMENTS = [ ('cond_stage_model.transformer.embeddings.', 'cond_stage_model.transformer.text_model.embeddings.'), ('cond_stage_model.transformer.encoder.', 'cond_stage_model.transformer.text_model.encoder.'), ('cond_stage_model.transformer.final_layer_norm.', 'cond_stage_model.transformer.text_model.final_layer_norm.') ] checkpoint = torch.load(ckpt_path, map_location="cpu") state_dict = checkpoint["state_dict"] key_reps = [] for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS: for key in state_dict.keys(): if key.startswith(rep_from): new_key = rep_to + key[len(rep_from):] key_reps.append((key, new_key)) for key, new_key in key_reps: state_dict[new_key] = state_dict[key] del state_dict[key] return checkpoint def load_models_from_stable_diffusion_checkpoint(ckpt_path): checkpoint = load_checkpoint_with_conversion(ckpt_path) state_dict = checkpoint["state_dict"] # Convert the UNet2DConditionModel model. unet_config = create_unet_diffusers_config() converted_unet_checkpoint = convert_ldm_unet_checkpoint(state_dict, unet_config) unet = UNet2DConditionModel(**unet_config) unet.load_state_dict(converted_unet_checkpoint) # Convert the VAE model. vae_config = create_vae_diffusers_config() converted_vae_checkpoint = convert_ldm_vae_checkpoint(state_dict, vae_config) vae = AutoencoderKL(**vae_config) vae.load_state_dict(converted_vae_checkpoint) # convert text_model text_model = convert_ldm_clip_checkpoint(state_dict) return text_model, vae, unet def save_stable_diffusion_checkpoint(output_file, text_encoder, unet, ckpt_path, epochs, steps, save_dtype=None): # VAEがメモリ上にないので、もう一度VAEを含めて読み込む checkpoint = load_checkpoint_with_conversion(ckpt_path) state_dict = checkpoint["state_dict"] # Convert the UNet model unet_state_dict = convert_unet_state_dict(unet.state_dict()) for k, v in unet_state_dict.items(): key = "model.diffusion_model." + k assert key in state_dict, f"Illegal key in save SD: {key}" if save_dtype is not None: v = v.detach().clone().to("cpu").to(save_dtype) state_dict[key] = v # Convert the text encoder model text_enc_dict = text_encoder.state_dict() # 変換不要 for k, v in text_enc_dict.items(): key = "cond_stage_model.transformer." + k assert key in state_dict, f"Illegal key in save SD: {key}" if save_dtype is not None: v = v.detach().clone().to("cpu").to(save_dtype) state_dict[key] = v # Put together new checkpoint new_ckpt = {'state_dict': state_dict} if 'epoch' in checkpoint: epochs += checkpoint['epoch'] if 'global_step' in checkpoint: steps += checkpoint['global_step'] new_ckpt['epoch'] = epochs new_ckpt['global_step'] = steps torch.save(new_ckpt, output_file) # endregion def collate_fn(examples): return examples[0] def train(args): fine_tuning = args.fine_tuning cache_latents = args.cache_latents # latentsをキャッシュする場合のオプション設定を確認する if cache_latents: # assert args.face_crop_aug_range is None and not args.random_crop, "when caching latents, crop aug cannot be used / latentをキャッシュするときは切り出しは使えません" # →使えるようにしておく(初期イメージの切り出しになる) assert not args.flip_aug and not args.color_aug, "when caching latents, augmentation cannot be used / latentをキャッシュするときはaugmentationは使えません" # モデル形式のオプション設定を確認する use_stable_diffusion_format = os.path.isfile(args.pretrained_model_name_or_path) if not use_stable_diffusion_format: assert os.path.exists( args.pretrained_model_name_or_path), f"no pretrained model / 学習元モデルがありません : {args.pretrained_model_name_or_path}" assert args.save_every_n_epochs is None or use_stable_diffusion_format, "when loading Diffusers model, save_every_n_epochs does not work / Diffusersのモデルを読み込むときにはsave_every_n_epochsオプションは無効になります" if args.seed is not None: set_seed(args.seed) # 学習データを用意する def read_caption(img_path): # captionの候補ファイル名を作る base_name = os.path.splitext(img_path)[0] base_name_face_det = base_name tokens = base_name.split("_") if len(tokens) >= 5: base_name_face_det = "_".join(tokens[:-4]) cap_paths = [base_name + args.caption_extention, base_name_face_det + args.caption_extention] caption = None for cap_path in cap_paths: if os.path.isfile(cap_path): with open(cap_path, "rt", encoding='utf-8') as f: caption = f.readlines()[0].strip() break return caption def load_dreambooth_dir(dir): tokens = os.path.basename(dir).split('_') try: n_repeats = int(tokens[0]) except ValueError as e: return 0, [] caption = '_'.join(tokens[1:]) print(f"found directory {n_repeats}_{caption}") img_paths = glob.glob(os.path.join(dir, "*.png")) + glob.glob(os.path.join(dir, "*.jpg")) + \ glob.glob(os.path.join(dir, "*.webp")) # 画像ファイルごとにプロンプトを読み込み、もしあれば連結する captions = [] for img_path in img_paths: cap_for_img = read_caption(img_path) captions.append(caption + ("" if cap_for_img is None else cap_for_img)) return n_repeats, list(zip(img_paths, captions)) print("prepare train images.") train_img_path_captions = [] if fine_tuning: img_paths = glob.glob(os.path.join(args.train_data_dir, "*.png")) + \ glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + glob.glob(os.path.join(args.train_data_dir, "*.webp")) for img_path in tqdm(img_paths): caption = read_caption(img_path) assert caption is not None and len( caption) > 0, f"no caption for image. check caption_extention option / キャプションファイルが見つからないかcaptionが空です。caption_extentionオプションを確認してください: {img_path}" train_img_path_captions.append((img_path, caption)) if args.dataset_repeats is not None: l = [] for _ in range(args.dataset_repeats): l.extend(train_img_path_captions) train_img_path_captions = l else: train_dirs = os.listdir(args.train_data_dir) for dir in train_dirs: n_repeats, img_caps = load_dreambooth_dir(os.path.join(args.train_data_dir, dir)) for _ in range(n_repeats): train_img_path_captions.extend(img_caps) print(f"{len(train_img_path_captions)} train images with repeating.") reg_img_path_captions = [] if args.reg_data_dir: print("prepare reg images.") reg_dirs = os.listdir(args.reg_data_dir) for dir in reg_dirs: n_repeats, img_caps = load_dreambooth_dir(os.path.join(args.reg_data_dir, dir)) for _ in range(n_repeats): reg_img_path_captions.extend(img_caps) print(f"{len(reg_img_path_captions)} reg images.") # データセットを準備する resolution = tuple([int(r) for r in args.resolution.split(',')]) if len(resolution) == 1: resolution = (resolution[0], resolution[0]) assert len(resolution) == 2, \ f"resolution must be 'size' or 'width,height' / resolutionは'サイズ'または'幅','高さ'で指定してください: {args.resolution}" if args.enable_bucket: assert min(resolution) >= args.min_bucket_reso, f"min_bucket_reso must be equal or greater than resolution / min_bucket_resoは解像度の数値以上で指定してください" assert max(resolution) <= args.max_bucket_reso, f"max_bucket_reso must be equal or less than resolution / max_bucket_resoは解像度の数値以下で指定してください" if args.face_crop_aug_range is not None: face_crop_aug_range = tuple([float(r) for r in args.face_crop_aug_range.split(',')]) assert len( face_crop_aug_range) == 2, f"face_crop_aug_range must be two floats / face_crop_aug_rangeは'下限,上限'で指定してください: {args.face_crop_aug_range}" else: face_crop_aug_range = None # tokenizerを読み込む print("prepare tokenizer") tokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH) print("prepare dataset") train_dataset = DreamBoothOrFineTuningDataset(args.train_batch_size, fine_tuning, train_img_path_captions, reg_img_path_captions, tokenizer, resolution, args.prior_loss_weight, args.flip_aug, args.color_aug, face_crop_aug_range, args.random_crop, args.shuffle_caption, args.no_token_padding, args.debug_dataset) if args.debug_dataset: train_dataset.make_buckets_with_caching(args.enable_bucket, None, args.min_bucket_reso, args.max_bucket_reso) # デバッグ用にcacheなしで作る print(f"Total dataset length (steps) / データセットの長さ(ステップ数): {len(train_dataset)}") print("Escape for exit. / Escキーで中断、終了します") for example in train_dataset: for im, cap, lw in zip(example['images'], example['captions'], example['loss_weights']): im = ((im.numpy() + 1.0) * 127.5).astype(np.uint8) im = np.transpose(im, (1, 2, 0)) # c,H,W -> H,W,c im = im[:, :, ::-1] # RGB -> BGR (OpenCV) print(f'size: {im.shape[1]}*{im.shape[0]}, caption: "{cap}", loss weight: {lw}') cv2.imshow("img", im) k = cv2.waitKey() cv2.destroyAllWindows() if k == 27: break if k == 27: break return # acceleratorを準備する # gradient accumulationは複数モデルを学習する場合には対応していないとのことなので、1固定にする print("prepare accelerator") if args.logging_dir is None: log_with = None logging_dir = None else: log_with = "tensorboard" logging_dir = args.logging_dir + "/" + time.strftime('%Y%m%d%H%M%S', time.localtime()) accelerator = Accelerator(gradient_accumulation_steps=1, mixed_precision=args.mixed_precision, log_with=log_with, logging_dir=logging_dir) # モデルを読み込む if use_stable_diffusion_format: print("load StableDiffusion checkpoint") text_encoder, vae, unet = load_models_from_stable_diffusion_checkpoint(args.pretrained_model_name_or_path) else: print("load Diffusers pretrained models") text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") # モデルに xformers とか memory efficient attention を組み込む replace_unet_modules(unet, args.mem_eff_attn, args.xformers) # mixed precisionに対応した型を用意しておき適宜castする weight_dtype = torch.float32 if args.mixed_precision == "fp16": weight_dtype = torch.float16 elif args.mixed_precision == "bf16": weight_dtype = torch.bfloat16 save_dtype = None if args.save_precision == "fp16": save_dtype = torch.float16 elif args.save_precision == "bf16": save_dtype = torch.bfloat16 elif args.save_precision == "float": save_dtype = torch.float32 # 学習を準備する if cache_latents: vae.to(accelerator.device, dtype=weight_dtype) vae.requires_grad_(False) vae.eval() with torch.no_grad(): train_dataset.make_buckets_with_caching(args.enable_bucket, vae, args.min_bucket_reso, args.max_bucket_reso) del vae if torch.cuda.is_available(): torch.cuda.empty_cache() else: train_dataset.make_buckets_with_caching(args.enable_bucket, None, args.min_bucket_reso, args.max_bucket_reso) vae.requires_grad_(False) vae.eval() unet.requires_grad_(True) # 念のため追加 text_encoder.requires_grad_(True) if args.gradient_checkpointing: unet.enable_gradient_checkpointing() text_encoder.gradient_checkpointing_enable() # 学習に必要なクラスを準備する print("prepare optimizer, data loader etc.") # 8-bit Adamを使う if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです") print("use 8-bit Adam optimizer") optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW trainable_params = (itertools.chain(unet.parameters(), text_encoder.parameters())) # betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略 optimizer = optimizer_class(trainable_params, lr=args.learning_rate) # dataloaderを準備する # DataLoaderのプロセス数:0はメインプロセスになる n_workers = min(8, os.cpu_count() - 1) # cpu_count-1 ただし最大8 train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=1, shuffle=False, collate_fn=collate_fn, num_workers=n_workers) # lr schedulerを用意する lr_scheduler = diffusers.optimization.get_scheduler("constant", optimizer, num_training_steps=args.max_train_steps) # acceleratorがなんかよろしくやってくれるらしい unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, text_encoder, optimizer, train_dataloader, lr_scheduler) if not cache_latents: vae.to(accelerator.device, dtype=weight_dtype) # resumeする if args.resume is not None: print(f"resume training from state: {args.resume}") accelerator.load_state(args.resume) # epoch数を計算する num_train_epochs = math.ceil(args.max_train_steps / len(train_dataloader)) # 学習する total_batch_size = args.train_batch_size # * accelerator.num_processes print("running training / 学習開始") print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset.num_train_images}") print(f" num reg images / 正則化画像の数: {train_dataset.num_reg_images}") print(f" num examples / サンプル数: {train_dataset.num_train_images * (2 if train_dataset.enable_reg_images else 1)}") print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") print(f" num epochs / epoch数: {num_train_epochs}") print(f" batch size per device / バッチサイズ: {args.train_batch_size}") print(f" total train batch size (with parallel & distributed) / 総バッチサイズ(並列学習含む): {total_batch_size}") print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process, desc="steps") global_step = 0 noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) if accelerator.is_main_process: accelerator.init_trackers("dreambooth") # 以下 train_dreambooth.py からほぼコピペ for epoch in range(num_train_epochs): print(f"epoch {epoch+1}/{num_train_epochs}") unet.train() text_encoder.train() # なんかunetだけでいいらしい?→最新版で修正されてた(;´Д`) いろいろ雑だな loss_total = 0 for step, batch in enumerate(train_dataloader): with accelerator.accumulate(unet): with torch.no_grad(): # latentに変換 if cache_latents: latents = batch["latents"].to(accelerator.device) else: latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * 0.18215 # Sample noise that we'll add to the latents noise = torch.randn_like(latents, device=latents.device) b_size = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning if args.clip_skip is None: encoder_hidden_states = text_encoder(batch["input_ids"])[0] else: enc_out = text_encoder(batch["input_ids"], output_hidden_states=True, return_dict=True) encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip] encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states) # Predict the noise residual noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample loss = torch.nn.functional.mse_loss(noise_pred.float(), noise.float(), reduction="none") loss = loss.mean([1, 2, 3]) loss_weights = batch["loss_weights"] # 各sampleごとのweight loss = loss * loss_weights loss = loss.mean() accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = (itertools.chain(unet.parameters(), text_encoder.parameters())) accelerator.clip_grad_norm_(params_to_clip, 1.0) # args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad(set_to_none=True) # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 current_loss = loss.detach().item() if args.logging_dir is not None: logs = {"loss": current_loss, "lr": lr_scheduler.get_last_lr()[0]} accelerator.log(logs, step=global_step) loss_total += current_loss avr_loss = loss_total / (step+1) logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if global_step >= args.max_train_steps: break if args.logging_dir is not None: logs = {"epoch_loss": loss_total / len(train_dataloader)} accelerator.log(logs, step=epoch+1) accelerator.wait_for_everyone() if use_stable_diffusion_format and args.save_every_n_epochs is not None: if (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs: print("saving check point.") os.makedirs(args.output_dir, exist_ok=True) ckpt_file = os.path.join(args.output_dir, EPOCH_CHECKPOINT_NAME.format(epoch + 1)) save_stable_diffusion_checkpoint(ckpt_file, accelerator.unwrap_model(text_encoder), accelerator.unwrap_model(unet), args.pretrained_model_name_or_path, epoch + 1, global_step, save_dtype) if args.save_state: print("saving state.") accelerator.save_state(os.path.join(args.output_dir, EPOCH_STATE_NAME.format(epoch + 1))) is_main_process = accelerator.is_main_process if is_main_process: unet = accelerator.unwrap_model(unet) text_encoder = accelerator.unwrap_model(text_encoder) accelerator.end_training() if args.save_state: print("saving last state.") accelerator.save_state(os.path.join(args.output_dir, LAST_STATE_NAME)) del accelerator # この後メモリを使うのでこれは消す if is_main_process: os.makedirs(args.output_dir, exist_ok=True) if use_stable_diffusion_format: ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME) print(f"save trained model as StableDiffusion checkpoint to {ckpt_file}") save_stable_diffusion_checkpoint(ckpt_file, text_encoder, unet, args.pretrained_model_name_or_path, epoch, global_step, save_dtype) else: # Create the pipeline using using the trained modules and save it. print(f"save trained model as Diffusers to {args.output_dir}") pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=unet, text_encoder=text_encoder, ) pipeline.save_pretrained(args.output_dir) print("model saved.") # region モジュール入れ替え部 """ 高速化のためのモジュール入れ替え """ # FlashAttentionを使うCrossAttention # based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py # LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE # constants EPSILON = 1e-6 # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d # flash attention forwards and backwards # https://arxiv.org/abs/2205.14135 class FlashAttentionFunction(Function): @ staticmethod @ torch.no_grad() def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size): """ Algorithm 2 in the paper """ device = q.device dtype = q.dtype max_neg_value = -torch.finfo(q.dtype).max qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) o = torch.zeros_like(q) all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device) all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device) scale = (q.shape[-1] ** -0.5) if not exists(mask): mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size) else: mask = rearrange(mask, 'b n -> b 1 1 n') mask = mask.split(q_bucket_size, dim=-1) row_splits = zip( q.split(q_bucket_size, dim=-2), o.split(q_bucket_size, dim=-2), mask, all_row_sums.split(q_bucket_size, dim=-2), all_row_maxes.split(q_bucket_size, dim=-2), ) for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits): q_start_index = ind * q_bucket_size - qk_len_diff col_splits = zip( k.split(k_bucket_size, dim=-2), v.split(k_bucket_size, dim=-2), ) for k_ind, (kc, vc) in enumerate(col_splits): k_start_index = k_ind * k_bucket_size attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale if exists(row_mask): attn_weights.masked_fill_(~row_mask, max_neg_value) if causal and q_start_index < (k_start_index + k_bucket_size - 1): causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(q_start_index - k_start_index + 1) attn_weights.masked_fill_(causal_mask, max_neg_value) block_row_maxes = attn_weights.amax(dim=-1, keepdims=True) attn_weights -= block_row_maxes exp_weights = torch.exp(attn_weights) if exists(row_mask): exp_weights.masked_fill_(~row_mask, 0.) block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON) new_row_maxes = torch.maximum(block_row_maxes, row_maxes) exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc) exp_row_max_diff = torch.exp(row_maxes - new_row_maxes) exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes) new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values) row_maxes.copy_(new_row_maxes) row_sums.copy_(new_row_sums) ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size) ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes) return o @ staticmethod @ torch.no_grad() def backward(ctx, do): """ Algorithm 4 in the paper """ causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args q, k, v, o, l, m = ctx.saved_tensors device = q.device max_neg_value = -torch.finfo(q.dtype).max qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) dq = torch.zeros_like(q) dk = torch.zeros_like(k) dv = torch.zeros_like(v) row_splits = zip( q.split(q_bucket_size, dim=-2), o.split(q_bucket_size, dim=-2), do.split(q_bucket_size, dim=-2), mask, l.split(q_bucket_size, dim=-2), m.split(q_bucket_size, dim=-2), dq.split(q_bucket_size, dim=-2) ) for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits): q_start_index = ind * q_bucket_size - qk_len_diff col_splits = zip( k.split(k_bucket_size, dim=-2), v.split(k_bucket_size, dim=-2), dk.split(k_bucket_size, dim=-2), dv.split(k_bucket_size, dim=-2), ) for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits): k_start_index = k_ind * k_bucket_size attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale if causal and q_start_index < (k_start_index + k_bucket_size - 1): causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(q_start_index - k_start_index + 1) attn_weights.masked_fill_(causal_mask, max_neg_value) exp_attn_weights = torch.exp(attn_weights - mc) if exists(row_mask): exp_attn_weights.masked_fill_(~row_mask, 0.) p = exp_attn_weights / lc dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc) dp = einsum('... i d, ... j d -> ... i j', doc, vc) D = (doc * oc).sum(dim=-1, keepdims=True) ds = p * scale * (dp - D) dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc) dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc) dqc.add_(dq_chunk) dkc.add_(dk_chunk) dvc.add_(dv_chunk) return dq, dk, dv, None, None, None, None def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers): if mem_eff_attn: replace_unet_cross_attn_to_memory_efficient() elif xformers: replace_unet_cross_attn_to_xformers() def replace_unet_cross_attn_to_memory_efficient(): print("Replace CrossAttention.forward to use FlashAttention") flash_func = FlashAttentionFunction def forward_flash_attn(self, x, context=None, mask=None): q_bucket_size = 512 k_bucket_size = 1024 h = self.heads q = self.to_q(x) context = context if context is not None else x context = context.to(x.dtype) k = self.to_k(context) v = self.to_v(context) del context, x q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size) out = rearrange(out, 'b h n d -> b n (h d)') # diffusers 0.6.0 if type(self.to_out) is torch.nn.Sequential: return self.to_out(out) # diffusers 0.7.0~ out = self.to_out[0](out) out = self.to_out[1](out) return out diffusers.models.attention.CrossAttention.forward = forward_flash_attn def replace_unet_cross_attn_to_xformers(): print("Replace CrossAttention.forward to use xformers") try: import xformers.ops except ImportError: raise ImportError("No xformers / xformersがインストールされていないようです") def forward_xformers(self, x, context=None, mask=None): h = self.heads q_in = self.to_q(x) context = default(context, x) context = context.to(x.dtype) k_in = self.to_k(context) v_in = self.to_v(context) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) # new format # q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) # legacy format del q_in, k_in, v_in out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる out = rearrange(out, 'b n h d -> b n (h d)', h=h) # out = rearrange(out, '(b h) n d -> b n (h d)', h=h) # diffusers 0.6.0 if type(self.to_out) is torch.nn.Sequential: return self.to_out(out) # diffusers 0.7.0~ out = self.to_out[0](out) out = self.to_out[1](out) return out diffusers.models.attention.CrossAttention.forward = forward_xformers # endregion if __name__ == '__main__': # torch.cuda.set_per_process_memory_fraction(0.48) parser = argparse.ArgumentParser() parser.add_argument("--pretrained_model_name_or_path", type=str, default=None, help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル") parser.add_argument("--fine_tuning", action="store_true", help="fine tune the model instead of DreamBooth / DreamBoothではなくfine tuningする") parser.add_argument("--shuffle_caption", action="store_true", help="shuffle comma-separated caption / コンマで区切られたcaptionの各要素をshuffleする") parser.add_argument("--caption_extention", type=str, default=".caption", help="extention of caption files / 読み込むcaptionファイルの拡張子") parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ") parser.add_argument("--reg_data_dir", type=str, default=None, help="directory for regularization images / 正則化画像データのディレクトリ") parser.add_argument("--dataset_repeats", type=int, default=None, help="repeat dataset in fine tuning / fine tuning時にデータセットを繰り返す回数") parser.add_argument("--output_dir", type=str, default=None, help="directory to output trained model, save as same format as input / 学習後のモデル出力先ディレクトリ(入力と同じ形式で保存)") parser.add_argument("--save_every_n_epochs", type=int, default=None, help="save checkpoint every N epochs (only supports in StableDiffusion checkpoint) / 学習中のモデルを指定エポックごとに保存します(StableDiffusion形式のモデルを読み込んだ場合のみ有効)") parser.add_argument("--save_state", action="store_true", help="save training state additionally (including optimizer states etc.) / optimizerなど学習状態も含めたstateを追加で保存する") parser.add_argument("--resume", type=str, default=None, help="saved state to resume training / 学習再開するモデルのstate") parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="loss weight for regularization images / 正則化画像のlossの重み") parser.add_argument("--no_token_padding", action="store_true", help="disable token padding (same as Diffuser's DreamBooth) / トークンのpaddingを無効にする(Diffusers版DreamBoothと同じ動作)") parser.add_argument("--color_aug", action="store_true", help="enable weak color augmentation / 学習時に色合いのaugmentationを有効にする") parser.add_argument("--flip_aug", action="store_true", help="enable horizontal flip augmentation / 学習時に左右反転のaugmentationを有効にする") parser.add_argument("--face_crop_aug_range", type=str, default=None, help="enable face-centered crop augmentation and its range (e.g. 2.0,4.0) / 学習時に顔を中心とした切り出しaugmentationを有効にするときは倍率を指定する(例:2.0,4.0)") parser.add_argument("--random_crop", action="store_true", help="enable random crop (for style training in face-centered crop augmentation) / ランダムな切り出しを有効にする(顔を中心としたaugmentationを行うときに画風の学習用に指定する)") parser.add_argument("--debug_dataset", action="store_true", help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)") parser.add_argument("--resolution", type=str, default=None, help="resolution in training ('size' or 'width,height') / 学習時の画像解像度('サイズ'指定、または'幅,高さ'指定)") parser.add_argument("--train_batch_size", type=int, default=1, help="batch size for training (1 means one train or reg data, not train/reg pair) / 学習時のバッチサイズ(1でtrain/regをそれぞれ1件ずつ学習)") parser.add_argument("--use_8bit_adam", action="store_true", help="use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使う(bitsandbytesのインストールが必要)") parser.add_argument("--mem_eff_attn", action="store_true", help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う") parser.add_argument("--xformers", action="store_true", help="use xformers for CrossAttention / CrossAttentionにxformersを使う") parser.add_argument("--cache_latents", action="store_true", help="cache latents to reduce memory (augmentations must be disabled) / メモリ削減のためにlatentをcacheする(augmentationは使用不可)") parser.add_argument("--enable_bucket", action="store_true", help="enable buckets for multi aspect ratio training / 複数解像度学習のためのbucketを有効にする") parser.add_argument("--min_bucket_reso", type=int, default=256, help="minimum resolution for buckets / bucketの最小解像度") parser.add_argument("--max_bucket_reso", type=int, default=1024, help="maximum resolution for buckets / bucketの最小解像度") parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率") parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数") parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed") parser.add_argument("--gradient_checkpointing", action="store_true", help="enable gradient checkpointing / grandient checkpointingを有効にする") parser.add_argument("--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度") parser.add_argument("--save_precision", type=str, default=None, choices=[None, "float", "fp16", "bf16"], help="precision in saving / 保存時に精度を変更して保存する") parser.add_argument("--clip_skip", type=int, default=None, help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いる(nは1以上)") parser.add_argument("--logging_dir", type=str, default=None, help="enable logging and output TensorBoard log to this directory / ログ出力を有効にしてこのディレクトリにTensorBoard用のログを出力する") args = parser.parse_args() train(args)