import gradio as gr import json import math import os import subprocess import pathlib import shutil import argparse from library.common_gui import ( get_folder_path, get_file_path, get_any_file_path, get_saveasfile_path, save_inference_file, set_pretrained_model_name_or_path_input, ) from library.utilities import utilities_tab folder_symbol = '\U0001f4c2' # 📂 refresh_symbol = '\U0001f504' # 🔄 save_style_symbol = '\U0001f4be' # 💾 document_symbol = '\U0001F4C4' # 📄 def save_configuration( save_as, file_path, pretrained_model_name_or_path, v2, v_parameterization, train_dir, image_folder, output_dir, logging_dir, max_resolution, min_bucket_reso, max_bucket_reso, batch_size, flip_aug, caption_metadata_filename, latent_metadata_filename, full_path, learning_rate, lr_scheduler, lr_warmup, dataset_repeats, train_batch_size, epoch, save_every_n_epochs, mixed_precision, save_precision, seed, num_cpu_threads_per_process, train_text_encoder, create_caption, create_buckets, save_model_as, caption_extension, use_8bit_adam, xformers, clip_skip, save_state, resume, gradient_checkpointing, gradient_accumulation_steps, mem_eff_attn, shuffle_caption, output_name, ): # Get list of function parameters and values parameters = list(locals().items()) original_file_path = file_path save_as_bool = True if save_as.get('label') == 'True' else False if save_as_bool: print('Save as...') file_path = get_saveasfile_path(file_path) else: print('Save...') if file_path == None or file_path == '': file_path = get_saveasfile_path(file_path) # print(file_path) if file_path == None: return original_file_path # Return the values of the variables as a dictionary variables = { name: value for name, value in parameters # locals().items() if name not in [ 'file_path', 'save_as', ] } # Save the data to the selected file with open(file_path, 'w') as file: json.dump(variables, file, indent=2) return file_path def open_config_file( file_path, pretrained_model_name_or_path, v2, v_parameterization, train_dir, image_folder, output_dir, logging_dir, max_resolution, min_bucket_reso, max_bucket_reso, batch_size, flip_aug, caption_metadata_filename, latent_metadata_filename, full_path, learning_rate, lr_scheduler, lr_warmup, dataset_repeats, train_batch_size, epoch, save_every_n_epochs, mixed_precision, save_precision, seed, num_cpu_threads_per_process, train_text_encoder, create_caption, create_buckets, save_model_as, caption_extension, use_8bit_adam, xformers, clip_skip, save_state, resume, gradient_checkpointing, gradient_accumulation_steps, mem_eff_attn, shuffle_caption, output_name, ): # Get list of function parameters and values parameters = list(locals().items()) original_file_path = file_path file_path = get_file_path(file_path) if file_path != '' and file_path != None: print(f'Loading config file {file_path}') # load variables from JSON file with open(file_path, 'r') as f: my_data_ft = json.load(f) else: file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action my_data_ft = {} values = [file_path] for key, value in parameters: # Set the value in the dictionary to the corresponding value in `my_data_ft`, or the default value if not found if not key in ['file_path']: values.append(my_data_ft.get(key, value)) # print(values) return tuple(values) def train_model( pretrained_model_name_or_path, v2, v_parameterization, train_dir, image_folder, output_dir, logging_dir, max_resolution, min_bucket_reso, max_bucket_reso, batch_size, flip_aug, caption_metadata_filename, latent_metadata_filename, full_path, learning_rate, lr_scheduler, lr_warmup, dataset_repeats, train_batch_size, epoch, save_every_n_epochs, mixed_precision, save_precision, seed, num_cpu_threads_per_process, train_text_encoder, generate_caption_database, generate_image_buckets, save_model_as, caption_extension, use_8bit_adam, xformers, clip_skip, save_state, resume, gradient_checkpointing, gradient_accumulation_steps, mem_eff_attn, shuffle_caption, output_name, ): # create caption json file if generate_caption_database: if not os.path.exists(train_dir): os.mkdir(train_dir) run_cmd = ( f'./venv/Scripts/python.exe finetune/merge_captions_to_metadata.py' ) if caption_extension == '': run_cmd += f' --caption_extension=".txt"' else: run_cmd += f' --caption_extension={caption_extension}' run_cmd += f' "{image_folder}"' run_cmd += f' "{train_dir}/{caption_metadata_filename}"' if full_path: run_cmd += f' --full_path' print(run_cmd) # Run the command subprocess.run(run_cmd) # create images buckets if generate_image_buckets: run_cmd = ( f'./venv/Scripts/python.exe finetune/prepare_buckets_latents.py' ) run_cmd += f' "{image_folder}"' run_cmd += f' "{train_dir}/{caption_metadata_filename}"' run_cmd += f' "{train_dir}/{latent_metadata_filename}"' run_cmd += f' "{pretrained_model_name_or_path}"' run_cmd += f' --batch_size={batch_size}' run_cmd += f' --max_resolution={max_resolution}' run_cmd += f' --min_bucket_reso={min_bucket_reso}' run_cmd += f' --max_bucket_reso={max_bucket_reso}' run_cmd += f' --mixed_precision={mixed_precision}' if flip_aug: run_cmd += f' --flip_aug' if full_path: run_cmd += f' --full_path' print(run_cmd) # Run the command subprocess.run(run_cmd) image_num = len( [f for f in os.listdir(image_folder) if f.endswith('.npz')] ) print(f'image_num = {image_num}') repeats = int(image_num) * int(dataset_repeats) print(f'repeats = {str(repeats)}') # calculate max_train_steps max_train_steps = int( math.ceil(float(repeats) / int(train_batch_size) * int(epoch)) ) # Divide by two because flip augmentation create two copied of the source images if flip_aug: max_train_steps = int(math.ceil(float(max_train_steps) / 2)) print(f'max_train_steps = {max_train_steps}') lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100)) print(f'lr_warmup_steps = {lr_warmup_steps}') run_cmd = f'accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process} "./fine_tune.py"' if v2: run_cmd += ' --v2' if v_parameterization: run_cmd += ' --v_parameterization' if train_text_encoder: run_cmd += ' --train_text_encoder' if use_8bit_adam: run_cmd += f' --use_8bit_adam' if xformers: run_cmd += f' --xformers' if gradient_checkpointing: run_cmd += ' --gradient_checkpointing' if mem_eff_attn: run_cmd += ' --mem_eff_attn' if shuffle_caption: run_cmd += ' --shuffle_caption' run_cmd += ( f' --pretrained_model_name_or_path="{pretrained_model_name_or_path}"' ) run_cmd += f' --in_json="{train_dir}/{latent_metadata_filename}"' run_cmd += f' --train_data_dir="{image_folder}"' run_cmd += f' --output_dir="{output_dir}"' if not logging_dir == '': run_cmd += f' --logging_dir="{logging_dir}"' run_cmd += f' --train_batch_size={train_batch_size}' run_cmd += f' --dataset_repeats={dataset_repeats}' run_cmd += f' --learning_rate={learning_rate}' run_cmd += f' --lr_scheduler={lr_scheduler}' run_cmd += f' --lr_warmup_steps={lr_warmup_steps}' run_cmd += f' --max_train_steps={max_train_steps}' run_cmd += f' --mixed_precision={mixed_precision}' run_cmd += f' --save_every_n_epochs={save_every_n_epochs}' run_cmd += f' --seed={seed}' run_cmd += f' --save_precision={save_precision}' if not save_model_as == 'same as source model': run_cmd += f' --save_model_as={save_model_as}' if int(clip_skip) > 1: run_cmd += f' --clip_skip={str(clip_skip)}' if int(gradient_accumulation_steps) > 1: run_cmd += f' --gradient_accumulation_steps={int(gradient_accumulation_steps)}' if save_state: run_cmd += ' --save_state' if not resume == '': run_cmd += f' --resume={resume}' if not output_name == '': run_cmd += f' --output_name="{output_name}"' print(run_cmd) # Run the command subprocess.run(run_cmd) # check if output_dir/last is a folder... therefore it is a diffuser model last_dir = pathlib.Path(f'{output_dir}/{output_name}') if not last_dir.is_dir(): # Copy inference model for v2 if required save_inference_file(output_dir, v2, v_parameterization, output_name) def remove_doublequote(file_path): if file_path != None: file_path = file_path.replace('"', '') return file_path def UI(username, password): css = '' if os.path.exists('./style.css'): with open(os.path.join('./style.css'), 'r', encoding='utf8') as file: print('Load CSS...') css += file.read() + '\n' interface = gr.Blocks(css=css) with interface: with gr.Tab('Finetune'): finetune_tab() with gr.Tab('Utilities'): utilities_tab(enable_dreambooth_tab=False) # Show the interface if not username == '': interface.launch(auth=(username, password)) else: interface.launch() def finetune_tab(): dummy_ft_true = gr.Label(value=True, visible=False) dummy_ft_false = gr.Label(value=False, visible=False) gr.Markdown('Train a custom model using kohya finetune python code...') with gr.Accordion('Configuration file', open=False): with gr.Row(): button_open_config = gr.Button( f'Open {folder_symbol}', elem_id='open_folder' ) button_save_config = gr.Button( f'Save {save_style_symbol}', elem_id='open_folder' ) button_save_as_config = gr.Button( f'Save as... {save_style_symbol}', elem_id='open_folder', ) config_file_name = gr.Textbox( label='', placeholder='type file path or use buttons...' ) config_file_name.change( remove_doublequote, inputs=[config_file_name], outputs=[config_file_name], ) with gr.Tab('Source model'): # Define the input elements with gr.Row(): pretrained_model_name_or_path_input = gr.Textbox( label='Pretrained model name or path', placeholder='enter the path to custom model or name of pretrained model', ) pretrained_model_name_or_path_file = gr.Button( document_symbol, elem_id='open_folder_small' ) pretrained_model_name_or_path_file.click( get_any_file_path, inputs=pretrained_model_name_or_path_input, outputs=pretrained_model_name_or_path_input, ) pretrained_model_name_or_path_folder = gr.Button( folder_symbol, elem_id='open_folder_small' ) pretrained_model_name_or_path_folder.click( get_folder_path, inputs=pretrained_model_name_or_path_input, outputs=pretrained_model_name_or_path_input, ) model_list = gr.Dropdown( label='(Optional) Model Quick Pick', choices=[ 'custom', 'stabilityai/stable-diffusion-2-1-base', 'stabilityai/stable-diffusion-2-base', 'stabilityai/stable-diffusion-2-1', 'stabilityai/stable-diffusion-2', 'runwayml/stable-diffusion-v1-5', 'CompVis/stable-diffusion-v1-4', ], ) save_model_as_dropdown = gr.Dropdown( label='Save trained model as', choices=[ 'same as source model', 'ckpt', 'diffusers', 'diffusers_safetensors', 'safetensors', ], value='same as source model', ) with gr.Row(): v2_input = gr.Checkbox(label='v2', value=True) v_parameterization_input = gr.Checkbox( label='v_parameterization', value=False ) model_list.change( set_pretrained_model_name_or_path_input, inputs=[model_list, v2_input, v_parameterization_input], outputs=[ pretrained_model_name_or_path_input, v2_input, v_parameterization_input, ], ) with gr.Tab('Folders'): with gr.Row(): train_dir_input = gr.Textbox( label='Training config folder', placeholder='folder where the training configuration files will be saved', ) train_dir_folder = gr.Button( folder_symbol, elem_id='open_folder_small' ) train_dir_folder.click(get_folder_path, outputs=train_dir_input) image_folder_input = gr.Textbox( label='Training Image folder', placeholder='folder where the training images are located', ) image_folder_input_folder = gr.Button( folder_symbol, elem_id='open_folder_small' ) image_folder_input_folder.click( get_folder_path, outputs=image_folder_input ) with gr.Row(): output_dir_input = gr.Textbox( label='Model output folder', placeholder='folder where the model will be saved', ) output_dir_input_folder = gr.Button( folder_symbol, elem_id='open_folder_small' ) output_dir_input_folder.click( get_folder_path, outputs=output_dir_input ) logging_dir_input = gr.Textbox( label='Logging folder', placeholder='Optional: enable logging and output TensorBoard log to this folder', ) logging_dir_input_folder = gr.Button( folder_symbol, elem_id='open_folder_small' ) logging_dir_input_folder.click( get_folder_path, outputs=logging_dir_input ) with gr.Row(): output_name = gr.Textbox( label='Model output name', placeholder='Name of the model to output', value='last', interactive=True, ) train_dir_input.change( remove_doublequote, inputs=[train_dir_input], outputs=[train_dir_input], ) image_folder_input.change( remove_doublequote, inputs=[image_folder_input], outputs=[image_folder_input], ) output_dir_input.change( remove_doublequote, inputs=[output_dir_input], outputs=[output_dir_input], ) with gr.Tab('Dataset preparation'): with gr.Row(): max_resolution_input = gr.Textbox( label='Resolution (width,height)', value='512,512' ) min_bucket_reso = gr.Textbox( label='Min bucket resolution', value='256' ) max_bucket_reso = gr.Textbox( label='Max bucket resolution', value='1024' ) batch_size = gr.Textbox(label='Batch size', value='1') with gr.Accordion('Advanced parameters', open=False): with gr.Row(): caption_metadata_filename = gr.Textbox( label='Caption metadata filename', value='meta_cap.json' ) latent_metadata_filename = gr.Textbox( label='Latent metadata filename', value='meta_lat.json' ) full_path = gr.Checkbox(label='Use full path', value=True) flip_aug = gr.Checkbox(label='Flip augmentation', value=False) with gr.Tab('Training parameters'): with gr.Row(): learning_rate_input = gr.Textbox(label='Learning rate', value=1e-6) lr_scheduler_input = gr.Dropdown( label='LR Scheduler', choices=[ 'constant', 'constant_with_warmup', 'cosine', 'cosine_with_restarts', 'linear', 'polynomial', ], value='constant', ) lr_warmup_input = gr.Textbox(label='LR warmup', value=0) with gr.Row(): dataset_repeats_input = gr.Textbox( label='Dataset repeats', value=40 ) train_batch_size_input = gr.Slider( minimum=1, maximum=32, label='Train batch size', value=1, step=1, ) epoch_input = gr.Textbox(label='Epoch', value=1) save_every_n_epochs_input = gr.Textbox( label='Save every N epochs', value=1 ) with gr.Row(): mixed_precision_input = gr.Dropdown( label='Mixed precision', choices=[ 'no', 'fp16', 'bf16', ], value='fp16', ) save_precision_input = gr.Dropdown( label='Save precision', choices=[ 'float', 'fp16', 'bf16', ], value='fp16', ) num_cpu_threads_per_process_input = gr.Slider( minimum=1, maximum=os.cpu_count(), step=1, label='Number of CPU threads per process', value=os.cpu_count(), ) seed_input = gr.Textbox(label='Seed', value=1234) with gr.Row(): caption_extention_input = gr.Textbox( label='Caption Extension', placeholder='(Optional) Extension for caption files. default: .txt', ) train_text_encoder_input = gr.Checkbox( label='Train text encoder', value=True ) with gr.Accordion('Advanced parameters', open=False): with gr.Row(): use_8bit_adam = gr.Checkbox(label='Use 8bit adam', value=True) xformers = gr.Checkbox(label='Use xformers', value=True) clip_skip = gr.Slider( label='Clip skip', value='1', minimum=1, maximum=12, step=1 ) mem_eff_attn = gr.Checkbox( label='Memory efficient attention', value=False ) shuffle_caption = gr.Checkbox( label='Shuffle caption', value=False ) with gr.Row(): save_state = gr.Checkbox( label='Save training state', value=False ) resume = gr.Textbox( label='Resume from saved training state', placeholder='path to "last-state" state folder to resume from', ) resume_button = gr.Button('📂', elem_id='open_folder_small') resume_button.click(get_folder_path, outputs=resume) gradient_checkpointing = gr.Checkbox( label='Gradient checkpointing', value=False ) gradient_accumulation_steps = gr.Number( label='Gradient accumulate steps', value='1' ) with gr.Box(): with gr.Row(): create_caption = gr.Checkbox( label='Generate caption metadata', value=True ) create_buckets = gr.Checkbox( label='Generate image buckets metadata', value=True ) button_run = gr.Button('Train model') settings_list = [ pretrained_model_name_or_path_input, v2_input, v_parameterization_input, train_dir_input, image_folder_input, output_dir_input, logging_dir_input, max_resolution_input, min_bucket_reso, max_bucket_reso, batch_size, flip_aug, caption_metadata_filename, latent_metadata_filename, full_path, learning_rate_input, lr_scheduler_input, lr_warmup_input, dataset_repeats_input, train_batch_size_input, epoch_input, save_every_n_epochs_input, mixed_precision_input, save_precision_input, seed_input, num_cpu_threads_per_process_input, train_text_encoder_input, create_caption, create_buckets, save_model_as_dropdown, caption_extention_input, use_8bit_adam, xformers, clip_skip, save_state, resume, gradient_checkpointing, gradient_accumulation_steps, mem_eff_attn, shuffle_caption, output_name, ] button_run.click(train_model, inputs=settings_list) button_open_config.click( open_config_file, inputs=[config_file_name] + settings_list, outputs=[config_file_name] + settings_list, ) button_save_config.click( save_configuration, inputs=[dummy_ft_false, config_file_name] + settings_list, outputs=[config_file_name], ) button_save_as_config.click( save_configuration, inputs=[dummy_ft_true, config_file_name] + settings_list, outputs=[config_file_name], ) if __name__ == '__main__': # torch.cuda.set_per_process_memory_fraction(0.48) parser = argparse.ArgumentParser() parser.add_argument( '--username', type=str, default='', help='Username for authentication' ) parser.add_argument( '--password', type=str, default='', help='Password for authentication' ) args = parser.parse_args() UI(username=args.username, password=args.password)