from tkinter import filedialog, Tk import os import gradio as gr from easygui import msgbox import shutil folder_symbol = '\U0001f4c2' # 📂 refresh_symbol = '\U0001f504' # 🔄 save_style_symbol = '\U0001f4be' # 💾 document_symbol = '\U0001F4C4' # 📄 def get_dir_and_file(file_path): dir_path, file_name = os.path.split(file_path) return (dir_path, file_name) def has_ext_files(directory, extension): # Iterate through all the files in the directory for file in os.listdir(directory): # If the file name ends with extension, return True if file.endswith(extension): return True # If no extension files were found, return False return False def get_file_path( file_path='', defaultextension='.json', extension_name='Config files' ): current_file_path = file_path # print(f'current file path: {current_file_path}') initial_dir, initial_file = get_dir_and_file(file_path) root = Tk() root.wm_attributes('-topmost', 1) root.withdraw() file_path = filedialog.askopenfilename( filetypes=( (f'{extension_name}', f'{defaultextension}'), ('All files', '*'), ), defaultextension=defaultextension, initialfile=initial_file, initialdir=initial_dir, ) root.destroy() if file_path == '': file_path = current_file_path return file_path def get_any_file_path(file_path=''): current_file_path = file_path # print(f'current file path: {current_file_path}') initial_dir, initial_file = get_dir_and_file(file_path) root = Tk() root.wm_attributes('-topmost', 1) root.withdraw() file_path = filedialog.askopenfilename( initialdir=initial_dir, initialfile=initial_file, ) root.destroy() if file_path == '': file_path = current_file_path return file_path def remove_doublequote(file_path): if file_path != None: file_path = file_path.replace('"', '') return file_path def get_folder_path(folder_path=''): current_folder_path = folder_path initial_dir, initial_file = get_dir_and_file(folder_path) root = Tk() root.wm_attributes('-topmost', 1) root.withdraw() folder_path = filedialog.askdirectory(initialdir=initial_dir) root.destroy() if folder_path == '': folder_path = current_folder_path return folder_path def get_saveasfile_path( file_path='', defaultextension='.json', extension_name='Config files' ): current_file_path = file_path # print(f'current file path: {current_file_path}') initial_dir, initial_file = get_dir_and_file(file_path) root = Tk() root.wm_attributes('-topmost', 1) root.withdraw() save_file_path = filedialog.asksaveasfile( filetypes=( (f'{extension_name}', f'{defaultextension}'), ('All files', '*'), ), defaultextension=defaultextension, initialdir=initial_dir, initialfile=initial_file, ) root.destroy() # print(save_file_path) if save_file_path == None: file_path = current_file_path else: print(save_file_path.name) file_path = save_file_path.name # print(file_path) return file_path def get_saveasfilename_path( file_path='', extensions='*', extension_name='Config files' ): current_file_path = file_path # print(f'current file path: {current_file_path}') initial_dir, initial_file = get_dir_and_file(file_path) root = Tk() root.wm_attributes('-topmost', 1) root.withdraw() save_file_path = filedialog.asksaveasfilename( filetypes=((f'{extension_name}', f'{extensions}'), ('All files', '*')), defaultextension=extensions, initialdir=initial_dir, initialfile=initial_file, ) root.destroy() if save_file_path == '': file_path = current_file_path else: # print(save_file_path) file_path = save_file_path return file_path def add_pre_postfix( folder='', prefix='', postfix='', caption_file_ext='.caption' ): if not has_ext_files(folder, caption_file_ext): msgbox( f'No files with extension {caption_file_ext} were found in {folder}...' ) return if prefix == '' and postfix == '': return files = [f for f in os.listdir(folder) if f.endswith(caption_file_ext)] if not prefix == '': prefix = f'{prefix} ' if not postfix == '': postfix = f' {postfix}' for file in files: with open(os.path.join(folder, file), 'r+') as f: content = f.read() content = content.rstrip() f.seek(0, 0) f.write(f'{prefix}{content}{postfix}') f.close() def find_replace(folder='', caption_file_ext='.caption', find='', replace=''): print('Running caption find/replace') if not has_ext_files(folder, caption_file_ext): msgbox( f'No files with extension {caption_file_ext} were found in {folder}...' ) return if find == '': return files = [f for f in os.listdir(folder) if f.endswith(caption_file_ext)] for file in files: with open(os.path.join(folder, file), 'r', errors="ignore") as f: content = f.read() f.close content = content.replace(find, replace) with open(os.path.join(folder, file), 'w') as f: f.write(content) f.close() def color_aug_changed(color_aug): if color_aug: msgbox( 'Disabling "Cache latent" because "Color augmentation" has been selected...' ) return gr.Checkbox.update(value=False, interactive=False) else: return gr.Checkbox.update(value=True, interactive=True) def save_inference_file(output_dir, v2, v_parameterization, output_name): # List all files in the directory files = os.listdir(output_dir) # Iterate over the list of files for file in files: # Check if the file starts with the value of output_name if file.startswith(output_name): # Check if it is a file or a directory if os.path.isfile(os.path.join(output_dir, file)): # Split the file name and extension file_name, ext = os.path.splitext(file) # Copy the v2-inference-v.yaml file to the current file, with a .yaml extension if v2 and v_parameterization: print( f'Saving v2-inference-v.yaml as {output_dir}/{file_name}.yaml' ) shutil.copy( f'./v2_inference/v2-inference-v.yaml', f'{output_dir}/{file_name}.yaml', ) elif v2: print( f'Saving v2-inference.yaml as {output_dir}/{file_name}.yaml' ) shutil.copy( f'./v2_inference/v2-inference.yaml', f'{output_dir}/{file_name}.yaml', ) def set_pretrained_model_name_or_path_input(value, v2, v_parameterization): # define a list of substrings to search for substrings_v2 = [ 'stabilityai/stable-diffusion-2-1-base', 'stabilityai/stable-diffusion-2-base', ] # check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list if str(value) in substrings_v2: print('SD v2 model detected. Setting --v2 parameter') v2 = True v_parameterization = False return value, v2, v_parameterization # define a list of substrings to search for v-objective substrings_v_parameterization = [ 'stabilityai/stable-diffusion-2-1', 'stabilityai/stable-diffusion-2', ] # check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list if str(value) in substrings_v_parameterization: print( 'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization' ) v2 = True v_parameterization = True return value, v2, v_parameterization # define a list of substrings to v1.x substrings_v1_model = [ 'CompVis/stable-diffusion-v1-4', 'runwayml/stable-diffusion-v1-5', ] if str(value) in substrings_v1_model: v2 = False v_parameterization = False return value, v2, v_parameterization if value == 'custom': value = '' v2 = False v_parameterization = False return value, v2, v_parameterization ### ### Gradio common GUI section ### def gradio_config(): with gr.Accordion('Configuration file', open=False): with gr.Row(): button_open_config = gr.Button('Open 📂', elem_id='open_folder') button_save_config = gr.Button('Save 💾', elem_id='open_folder') button_save_as_config = gr.Button( 'Save as... 💾', elem_id='open_folder' ) config_file_name = gr.Textbox( label='', placeholder="type the configuration file path or use the 'Open' button above to select it...", interactive=True, ) return (button_open_config, button_save_config, button_save_as_config, config_file_name) def gradio_source_model(): with gr.Tab('Source model'): # Define the input elements with gr.Row(): pretrained_model_name_or_path = gr.Textbox( label='Pretrained model name or path', placeholder='enter the path to custom model or name of pretrained model', ) pretrained_model_name_or_path_file = gr.Button( document_symbol, elem_id='open_folder_small' ) pretrained_model_name_or_path_file.click( get_any_file_path, inputs=pretrained_model_name_or_path, outputs=pretrained_model_name_or_path, ) pretrained_model_name_or_path_folder = gr.Button( folder_symbol, elem_id='open_folder_small' ) pretrained_model_name_or_path_folder.click( get_folder_path, inputs=pretrained_model_name_or_path, outputs=pretrained_model_name_or_path, ) model_list = gr.Dropdown( label='(Optional) Model Quick Pick', choices=[ 'custom', 'stabilityai/stable-diffusion-2-1-base', 'stabilityai/stable-diffusion-2-base', 'stabilityai/stable-diffusion-2-1', 'stabilityai/stable-diffusion-2', 'runwayml/stable-diffusion-v1-5', 'CompVis/stable-diffusion-v1-4', ], ) save_model_as = gr.Dropdown( label='Save trained model as', choices=[ 'same as source model', 'ckpt', 'diffusers', 'diffusers_safetensors', 'safetensors', ], value='safetensors', ) with gr.Row(): v2 = gr.Checkbox(label='v2', value=True) v_parameterization = gr.Checkbox( label='v_parameterization', value=False ) model_list.change( set_pretrained_model_name_or_path_input, inputs=[model_list, v2, v_parameterization], outputs=[ pretrained_model_name_or_path, v2, v_parameterization, ], ) return (pretrained_model_name_or_path, v2, v_parameterization, save_model_as, model_list) def gradio_training(learning_rate_value='1e-6', lr_scheduler_value='constant', lr_warmup_value='0'): with gr.Row(): train_batch_size = gr.Slider( minimum=1, maximum=32, label='Train batch size', value=1, step=1, ) epoch = gr.Textbox(label='Epoch', value=1) save_every_n_epochs = gr.Textbox( label='Save every N epochs', value=1 ) caption_extension = gr.Textbox( label='Caption Extension', placeholder='(Optional) Extension for caption files. default: .caption', ) with gr.Row(): mixed_precision = gr.Dropdown( label='Mixed precision', choices=[ 'no', 'fp16', 'bf16', ], value='fp16', ) save_precision = gr.Dropdown( label='Save precision', choices=[ 'float', 'fp16', 'bf16', ], value='fp16', ) num_cpu_threads_per_process = gr.Slider( minimum=1, maximum=os.cpu_count(), step=1, label='Number of CPU threads per process', value=os.cpu_count(), ) seed = gr.Textbox(label='Seed', value=1234) with gr.Row(): learning_rate = gr.Textbox(label='Learning rate', value=learning_rate_value) lr_scheduler = gr.Dropdown( label='LR Scheduler', choices=[ 'constant', 'constant_with_warmup', 'cosine', 'cosine_with_restarts', 'linear', 'polynomial', ], value=lr_scheduler_value, ) lr_warmup = gr.Textbox(label='LR warmup (% of steps)', value=lr_warmup_value) cache_latents = gr.Checkbox(label='Cache latent', value=True) return ( learning_rate, lr_scheduler, lr_warmup, train_batch_size, epoch, save_every_n_epochs, mixed_precision, save_precision, num_cpu_threads_per_process, seed, caption_extension, cache_latents, ) def run_cmd_training(**kwargs): options = [ f' --learning_rate="{kwargs.get("learning_rate", "")}"' if kwargs.get('learning_rate') else '', f' --lr_scheduler="{kwargs.get("lr_scheduler", "")}"' if kwargs.get('lr_scheduler') else '', f' --lr_warmup_steps="{kwargs.get("lr_warmup_steps", "")}"' if kwargs.get('lr_warmup_steps') else '', f' --train_batch_size="{kwargs.get("train_batch_size", "")}"' if kwargs.get('train_batch_size') else '', f' --max_train_steps="{kwargs.get("max_train_steps", "")}"' if kwargs.get('max_train_steps') else '', f' --save_every_n_epochs="{kwargs.get("save_every_n_epochs", "")}"' if kwargs.get('save_every_n_epochs') else '', f' --mixed_precision="{kwargs.get("mixed_precision", "")}"' if kwargs.get('mixed_precision') else '', f' --save_precision="{kwargs.get("save_precision", "")}"' if kwargs.get('save_precision') else '', f' --seed="{kwargs.get("seed", "")}"' if kwargs.get('seed') else '', f' --caption_extension="{kwargs.get("caption_extension", "")}"' if kwargs.get('caption_extension') else '', ' --cache_latents' if kwargs.get('cache_latents') else '', ] run_cmd = ''.join(options) return run_cmd def gradio_advanced_training(): with gr.Row(): full_fp16 = gr.Checkbox( label='Full fp16 training (experimental)', value=False ) gradient_checkpointing = gr.Checkbox( label='Gradient checkpointing', value=False ) shuffle_caption = gr.Checkbox( label='Shuffle caption', value=False ) use_8bit_adam = gr.Checkbox(label='Use 8bit adam', value=True) xformers = gr.Checkbox(label='Use xformers', value=True) with gr.Row(): color_aug = gr.Checkbox( label='Color augmentation', value=False ) flip_aug = gr.Checkbox(label='Flip augmentation', value=False) clip_skip = gr.Slider( label='Clip skip', value='1', minimum=1, maximum=12, step=1 ) mem_eff_attn = gr.Checkbox( label='Memory efficient attention', value=False ) max_token_length = gr.Dropdown( label='Max Token Length', choices=[ '75', '150', '225', ], value='75', ) with gr.Row(): save_state = gr.Checkbox(label='Save training state', value=False) resume = gr.Textbox( label='Resume from saved training state', placeholder='path to "last-state" state folder to resume from', ) resume_button = gr.Button('📂', elem_id='open_folder_small') resume_button.click(get_folder_path, outputs=resume) max_train_epochs = gr.Textbox( label='Max train epoch', placeholder='(Optional) Override number of epoch', ) max_data_loader_n_workers = gr.Textbox( label='Max num workers for DataLoader', placeholder='(Optional) Override number of epoch. Default: 8', ) return ( use_8bit_adam, xformers, full_fp16, gradient_checkpointing, shuffle_caption, color_aug, flip_aug, clip_skip, mem_eff_attn, save_state, resume, max_token_length, max_train_epochs, max_data_loader_n_workers, ) def run_cmd_advanced_training(**kwargs): options = [ f' --max_train_epochs="{kwargs.get("max_train_epochs", "")}"' if kwargs.get('max_train_epochs') else '', f' --max_data_loader_n_workers="{kwargs.get("max_data_loader_n_workers", "")}"' if kwargs.get('max_data_loader_n_workers') else '', f' --max_token_length={kwargs.get("max_token_length", "")}' if int(kwargs.get('max_token_length', 75)) > 75 else '', f' --clip_skip={kwargs.get("clip_skip", "")}' if int(kwargs.get('clip_skip', 1)) > 1 else '', f' --resume="{kwargs.get("resume", "")}"' if kwargs.get('resume') else '', ' --save_state' if kwargs.get('save_state') else '', ' --mem_eff_attn' if kwargs.get('mem_eff_attn') else '', ' --color_aug' if kwargs.get('color_aug') else '', ' --flip_aug' if kwargs.get('flip_aug') else '', ' --shuffle_caption' if kwargs.get('shuffle_caption') else '', ' --gradient_checkpointing' if kwargs.get('gradient_checkpointing') else '', ' --full_fp16' if kwargs.get('full_fp16') else '', ' --xformers' if kwargs.get('xformers') else '', ' --use_8bit_adam' if kwargs.get('use_8bit_adam') else '', ] run_cmd = ''.join(options) return run_cmd