# This powershell script will create a model using the fine tuning dreambooth method. It will require landscape, # portrait and square images. # # Adjust the script to your own needs # Sylvia Ritter # variable values $pretrained_model_name_or_path = "D:\models\v1-5-pruned-mse-vae.ckpt" $data_dir = "D:\test\squat" $train_dir = "D:\test\" $resolution = "512,512" $image_num = Get-ChildItem $data_dir -Recurse -File -Include *.png | Measure-Object | %{$_.Count} Write-Output "image_num: $image_num" $learning_rate = 1e-6 $dataset_repeats = 40 $train_batch_size = 8 $epoch = 1 $save_every_n_epochs=1 $mixed_precision="fp16" $num_cpu_threads_per_process=6 # You should not have to change values past this point $output_dir = $train_dir + "\model" $repeats = $image_num * $dataset_repeats $mts = [Math]::Ceiling($repeats / $train_batch_size * $epoch) Write-Output "Repeats: $repeats" .\venv\Scripts\activate accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed-ber.py ` --pretrained_model_name_or_path=$pretrained_model_name_or_path ` --train_data_dir=$data_dir ` --output_dir=$output_dir ` --resolution=$resolution ` --train_batch_size=$train_batch_size ` --learning_rate=$learning_rate ` --max_train_steps=$mts ` --use_8bit_adam ` --xformers ` --mixed_precision=$mixed_precision ` --cache_latents ` --save_every_n_epochs=$save_every_n_epochs ` --fine_tuning ` --dataset_repeats=$dataset_repeats ` --save_precision="fp16" # 2nd pass at half the dataset repeat value accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed.py ` --pretrained_model_name_or_path=$output_dir"\last.ckpt" ` --train_data_dir=$data_dir ` --output_dir=$output_dir"2" ` --resolution=$resolution ` --train_batch_size=$train_batch_size ` --learning_rate=$learning_rate ` --max_train_steps=$([Math]::Ceiling($mts/2)) ` --use_8bit_adam ` --xformers ` --mixed_precision=$mixed_precision ` --cache_latents ` --save_every_n_epochs=$save_every_n_epochs ` --fine_tuning ` --dataset_repeats=$([Math]::Ceiling($dataset_repeats/2)) ` --save_precision="fp16" accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed-ber.py ` --pretrained_model_name_or_path=$output_dir"\last.ckpt" ` --train_data_dir=$data_dir ` --output_dir=$output_dir"2" ` --resolution=$resolution ` --train_batch_size=$train_batch_size ` --learning_rate=$learning_rate ` --max_train_steps=$mts ` --use_8bit_adam ` --xformers ` --mixed_precision=$mixed_precision ` --cache_latents ` --save_every_n_epochs=$save_every_n_epochs ` --fine_tuning ` --dataset_repeats=$dataset_repeats ` --save_precision="fp16"