# This powershell script will create a model using the fine tuning dreambooth method. It will require landscape, # portrait and square images. # # Adjust the script to your own needs # variable values $pretrained_model_name_or_path = "D:\models\512-base-ema.ckpt" $data_dir = "D:\models\dariusz_zawadzki\kohya_reg\data" $reg_data_dir = "D:\models\dariusz_zawadzki\kohya_reg\reg" $logging_dir = "D:\models\dariusz_zawadzki\logs" $output_dir = "D:\models\dariusz_zawadzki\train_db_fixed_model_reg_v2" $resolution = "512,512" $lr_scheduler="polynomial" $cache_latents = 1 # 1 = true, 0 = false $image_num = Get-ChildItem $data_dir -Recurse -File -Include *.png, *.jpg, *.webp | Measure-Object | %{$_.Count} Write-Output "image_num: $image_num" $dataset_repeats = 200 $learning_rate = 2e-6 $train_batch_size = 4 $epoch = 1 $save_every_n_epochs=1 $mixed_precision="bf16" $num_cpu_threads_per_process=6 # You should not have to change values past this point if ($cache_latents -eq 1) { $cache_latents_value="--cache_latents" } else { $cache_latents_value="" } $repeats = $image_num * $dataset_repeats $mts = [Math]::Ceiling($repeats / $train_batch_size * $epoch) Write-Output "Repeats: $repeats" cd D:\kohya_ss .\venv\Scripts\activate accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed.py ` --v2 ` --pretrained_model_name_or_path=$pretrained_model_name_or_path ` --train_data_dir=$data_dir ` --output_dir=$output_dir ` --resolution=$resolution ` --train_batch_size=$train_batch_size ` --learning_rate=$learning_rate ` --max_train_steps=$mts ` --use_8bit_adam ` --xformers ` --mixed_precision=$mixed_precision ` $cache_latents_value ` --save_every_n_epochs=$save_every_n_epochs ` --logging_dir=$logging_dir ` --save_precision="fp16" ` --reg_data_dir=$reg_data_dir ` --seed=494481440 ` --lr_scheduler=$lr_scheduler # Add the inference yaml file along with the model for proper loading. Need to have the same name as model... Most likelly "last.yaml" in our case.