# extract approximating LoRA by svd from two SD models # The code is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py # Thanks to cloneofsimo! import argparse import os import torch from safetensors.torch import load_file, save_file from tqdm import tqdm import library.model_util as model_util import lora import numpy as np CLAMP_QUANTILE = 1 # 0.99 MIN_DIFF = 1e-6 def save_to_file(file_name, model, state_dict, dtype): if dtype is not None: for key in list(state_dict.keys()): if type(state_dict[key]) == torch.Tensor: state_dict[key] = state_dict[key].to(dtype) if os.path.splitext(file_name)[1] == '.safetensors': save_file(model, file_name) else: torch.save(model, file_name) def svd(args): def str_to_dtype(p): if p == 'float': return torch.float if p == 'fp16': return torch.float16 if p == 'bf16': return torch.bfloat16 return None save_dtype = str_to_dtype(args.save_precision) print(f"loading SD model : {args.model_org}") text_encoder_o, _, unet_o = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.model_org) print(f"loading SD model : {args.model_tuned}") text_encoder_t, _, unet_t = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.model_tuned) # create LoRA network to extract weights: Use dim (rank) as alpha lora_network_o = lora.create_network(1.0, args.dim, args.dim * 1.5, None, text_encoder_o, unet_o) lora_network_t = lora.create_network(1.0, args.dim, args.dim * 1.5, None, text_encoder_t, unet_t) assert len(lora_network_o.text_encoder_loras) == len( lora_network_t.text_encoder_loras), f"model version is different (SD1.x vs SD2.x) / それぞれのモデルのバージョンが違います(SD1.xベースとSD2.xベース) " # get diffs diffs = {} text_encoder_different = False for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.text_encoder_loras, lora_network_t.text_encoder_loras)): lora_name = lora_o.lora_name module_o = lora_o.org_module module_t = lora_t.org_module diff = module_t.weight - module_o.weight # Text Encoder might be same if torch.max(torch.abs(diff)) > MIN_DIFF: text_encoder_different = True diff = diff.float() diffs[lora_name] = diff if not text_encoder_different: print("Text encoder is same. Extract U-Net only.") lora_network_o.text_encoder_loras = [] diffs = {} for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.unet_loras, lora_network_t.unet_loras)): lora_name = lora_o.lora_name module_o = lora_o.org_module module_t = lora_t.org_module diff = module_t.weight - module_o.weight diff = diff.float() if args.device: diff = diff.to(args.device) diffs[lora_name] = diff # make LoRA with SVD print("calculating by SVD") rank = args.dim lora_weights = {} with torch.no_grad(): for lora_name, mat in tqdm(list(diffs.items())): conv2d = (len(mat.size()) == 4) if conv2d: mat = mat.squeeze() U, S, Vt = torch.linalg.svd(mat) U = U[:, :rank] S = S[:rank] U = U @ torch.diag(S) Vt = Vt[:rank, :] lora_weights[lora_name] = (U, Vt) # # make LoRA with svd # print("calculating by svd") # rank = args.dim # lora_weights = {} # with torch.no_grad(): # for lora_name, mat in tqdm(list(diffs.items())): # conv2d = (len(mat.size()) == 4) # if conv2d: # mat = mat.squeeze() # U, S, Vh = torch.linalg.svd(mat) # U = U[:, :rank] # S = S[:rank] # U = U @ torch.diag(S) # Vh = Vh[:rank, :] # # create new tensors directly from the numpy arrays # U = torch.as_tensor(U) # Vh = torch.as_tensor(Vh) # # dist = torch.cat([U.flatten(), Vh.flatten()]) # # hi_val = torch.quantile(dist, CLAMP_QUANTILE) # # low_val = -hi_val # # U = U.clamp(low_val, hi_val) # # Vh = Vh.clamp(low_val, hi_val) # # # soft thresholding # # alpha = S[-1] / 1000.0 # adjust this parameter as needed # # U = torch.sign(U) * torch.nn.functional.relu(torch.abs(U) - alpha) # # Vh = torch.sign(Vh) * torch.nn.functional.relu(torch.abs(Vh) - alpha) # lora_weights[lora_name] = (U, Vh) # make state dict for LoRA lora_network_o.apply_to(text_encoder_o, unet_o, text_encoder_different, True) # to make state dict lora_sd = lora_network_o.state_dict() print(f"LoRA has {len(lora_sd)} weights.") for key in list(lora_sd.keys()): if "alpha" in key: continue lora_name = key.split('.')[0] i = 0 if "lora_up" in key else 1 weights = lora_weights[lora_name][i] # print(key, i, weights.size(), lora_sd[key].size()) if len(lora_sd[key].size()) == 4: weights = weights.unsqueeze(2).unsqueeze(3) assert weights.size() == lora_sd[key].size(), f"size unmatch: {key}" lora_sd[key] = weights # load state dict to LoRA and save it info = lora_network_o.load_state_dict(lora_sd) print(f"Loading extracted LoRA weights: {info}") dir_name = os.path.dirname(args.save_to) if dir_name and not os.path.exists(dir_name): os.makedirs(dir_name, exist_ok=True) # minimum metadata metadata = {"ss_network_dim": str(args.dim), "ss_network_alpha": str(args.dim * 1.5)} lora_network_o.save_weights(args.save_to, save_dtype, metadata) print(f"LoRA weights are saved to: {args.save_to}") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--v2", action='store_true', help='load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む') parser.add_argument("--save_precision", type=str, default=None, choices=[None, "float", "fp16", "bf16"], help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はfloat") parser.add_argument("--model_org", type=str, default=None, help="Stable Diffusion original model: ckpt or safetensors file / 元モデル、ckptまたはsafetensors") parser.add_argument("--model_tuned", type=str, default=None, help="Stable Diffusion tuned model, LoRA is difference of `original to tuned`: ckpt or safetensors file / 派生モデル(生成されるLoRAは元→派生の差分になります)、ckptまたはsafetensors") parser.add_argument("--save_to", type=str, default=None, help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors") parser.add_argument("--dim", type=int, default=4, help="dimension (rank) of LoRA (default 4) / LoRAの次元数(rank)(デフォルト4)") parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う") args = parser.parse_args() svd(args)