# このスクリプトのライセンスは、train_dreambooth.pyと同じくApache License 2.0とします # (c) 2022 Kohya S. @kohya_ss from torch.autograd.function import Function import argparse import glob import itertools import math import os import random from tqdm import tqdm import torch from torchvision import transforms from accelerate import Accelerator from accelerate.utils import set_seed from transformers import CLIPTextModel, CLIPTokenizer import diffusers from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel import albumentations as albu import numpy as np from PIL import Image import cv2 from einops import rearrange from torch import einsum # Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う TOKENIZER_PATH = "openai/clip-vit-large-patch14" # StableDiffusionのモデルパラメータ NUM_TRAIN_TIMESTEPS = 1000 BETA_START = 0.00085 BETA_END = 0.0120 UNET_PARAMS_MODEL_CHANNELS = 320 UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4] UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1] UNET_PARAMS_IMAGE_SIZE = 32 # unused UNET_PARAMS_IN_CHANNELS = 4 UNET_PARAMS_OUT_CHANNELS = 4 UNET_PARAMS_NUM_RES_BLOCKS = 2 UNET_PARAMS_CONTEXT_DIM = 768 UNET_PARAMS_NUM_HEADS = 8 VAE_PARAMS_Z_CHANNELS = 4 VAE_PARAMS_RESOLUTION = 256 VAE_PARAMS_IN_CHANNELS = 3 VAE_PARAMS_OUT_CH = 3 VAE_PARAMS_CH = 128 VAE_PARAMS_CH_MULT = [1, 2, 4, 4] VAE_PARAMS_NUM_RES_BLOCKS = 2 # checkpointファイル名 LAST_CHECKPOINT_NAME = "last.ckpt" EPOCH_CHECKPOINT_NAME = "epoch-{:06d}.ckpt" class DreamBoothOrFineTuningDataset(torch.utils.data.Dataset): def __init__(self, fine_tuning, train_img_path_captions, reg_img_path_captions, tokenizer, resolution, flip_aug, color_aug, face_crop_aug_range, random_crop, shuffle_caption, debug_dataset) -> None: super().__init__() self.fine_tuning = fine_tuning self.train_img_path_captions = train_img_path_captions self.reg_img_path_captions = reg_img_path_captions self.tokenizer = tokenizer self.width, self.height = resolution self.size = min(self.width, self.height) # 短いほう self.face_crop_aug_range = face_crop_aug_range self.random_crop = random_crop self.debug_dataset = debug_dataset self.shuffle_caption = shuffle_caption # augmentation flip_p = 0.5 if flip_aug else 0.0 if color_aug: # わりと弱めの色合いaugmentation:brightness/contrastあたりは画像のpixel valueの最大値・最小値を変えてしまうのでよくないのではという想定でgamma/hue/saturationあたりを触る self.aug = albu.Compose([ albu.OneOf([ # albu.RandomBrightnessContrast(0.05, 0.05, p=.2), albu.HueSaturationValue(5, 8, 0, p=.2), # albu.RGBShift(5, 5, 5, p=.1), albu.RandomGamma((95, 105), p=.5), ], p=.33), albu.HorizontalFlip(p=flip_p) ], p=1.) elif flip_aug: self.aug = albu.Compose([ albu.HorizontalFlip(p=flip_p) ], p=1.) else: self.aug = None if self.fine_tuning: self._length = len(self.train_img_path_captions) else: # 学習データの倍として、奇数ならtrain self._length = len(self.train_img_path_captions) * 2 if self._length // 2 < len(self.reg_img_path_captions): print("some of reg images are not used / 正則化画像の数が多いので、一部使用されない正則化画像があります") self.image_transforms = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def load_image(self, image_path): image = Image.open(image_path) if not image.mode == "RGB": image = image.convert("RGB") img = np.array(image, np.uint8) face_cx = face_cy = face_w = face_h = 0 if self.face_crop_aug_range is not None: tokens = os.path.splitext(os.path.basename(image_path))[0].split('_') if len(tokens) >= 5: face_cx = int(tokens[-4]) face_cy = int(tokens[-3]) face_w = int(tokens[-2]) face_h = int(tokens[-1]) return img, face_cx, face_cy, face_w, face_h # いい感じに切り出す def crop_target(self, image, face_cx, face_cy, face_w, face_h): height, width = image.shape[0:2] if height == self.height and width == self.width: return image # 画像サイズはsizeより大きいのでリサイズする face_size = max(face_w, face_h) min_scale = max(self.height / height, self.width / width) # 画像がモデル入力サイズぴったりになる倍率(最小の倍率) min_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[1]))) # 指定した顔最小サイズ max_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[0]))) # 指定した顔最大サイズ if min_scale >= max_scale: # range指定がmin==max scale = min_scale else: scale = random.uniform(min_scale, max_scale) nh = int(height * scale + .5) nw = int(width * scale + .5) assert nh >= self.height and nw >= self.width, f"internal error. small scale {scale}, {width}*{height}" image = cv2.resize(image, (nw, nh), interpolation=cv2.INTER_AREA) face_cx = int(face_cx * scale + .5) face_cy = int(face_cy * scale + .5) height, width = nh, nw # 顔を中心として448*640とかへを切り出す for axis, (target_size, length, face_p) in enumerate(zip((self.height, self.width), (height, width), (face_cy, face_cx))): p1 = face_p - target_size // 2 # 顔を中心に持ってくるための切り出し位置 if self.random_crop: # 背景も含めるために顔を中心に置く確率を高めつつずらす range = max(length - face_p, face_p) # 画像の端から顔中心までの距離の長いほう p1 = p1 + (random.randint(0, range) + random.randint(0, range)) - range # -range ~ +range までのいい感じの乱数 else: # すこしだけランダムに(わりと適当) if face_size > self.size // 10 and face_size >= 40: p1 = p1 + random.randint(-face_size // 20, +face_size // 20) p1 = max(0, min(p1, length - target_size)) if axis == 0: image = image[p1:p1 + target_size, :] else: image = image[:, p1:p1 + target_size] return image def __len__(self): return self._length def __getitem__(self, index_arg): example = {} if self.fine_tuning or len(self.reg_img_path_captions) == 0: index = index_arg img_path_captions = self.train_img_path_captions reg = False else: # 偶数ならtrain、奇数ならregを返す if index_arg % 2 == 0: img_path_captions = self.train_img_path_captions reg = False else: img_path_captions = self.reg_img_path_captions reg = True index = index_arg // 2 example['reg'] = reg index = index % len(img_path_captions) image_path, caption = img_path_captions[index] example['image_path'] = image_path # 画像を読み込み必要ならcropする img, face_cx, face_cy, face_w, face_h = self.load_image(image_path) im_h, im_w = img.shape[0:2] if face_cx > 0: # 顔位置情報あり img = self.crop_target(img, face_cx, face_cy, face_w, face_h) elif im_h > self.height or im_w > self.width: assert self.random_crop, f"image too large, and face_crop_aug_range and random_crop are disabled / 画像サイズが大きいのでface_crop_aug_rangeかrandom_cropを有効にしてください" if im_h > self.height: p = random.randint(0, im_h - self.height) img = img[p:p + self.height] if im_w > self.width: p = random.randint(0, im_w - self.width) img = img[:, p:p + self.width] im_h, im_w = img.shape[0:2] assert im_h == self.height and im_w == self.width, f"image too small / 画像サイズが小さいようです: {image_path}" # augmentation if self.aug is not None: img = self.aug(image=img)['image'] example['image'] = self.image_transforms(img) # -1.0~1.0のtorch.Tensorになる # captionを処理する if self.fine_tuning and self.shuffle_caption: # fine tuning時にcaptionのshuffleをする tokens = caption.strip().split(",") random.shuffle(tokens) caption = ",".join(tokens).strip() example['caption_ids'] = self.tokenizer(caption, padding="do_not_pad", truncation=True, max_length=self.tokenizer.model_max_length).input_ids if self.debug_dataset: example['caption'] = caption return example class LatentsCachedDataset(torch.utils.data.Dataset): def __init__(self, latents_cache, examples): self.latents_cache = latents_cache self.examples = examples def __len__(self): return len(self.examples) def __getitem__(self, index): example = self.examples[index] return {'latents': self.latents_cache[example['image_path']], **example} # checkpoint変換など ############################### # region StableDiffusion->Diffusersの変換コード # convert_original_stable_diffusion_to_diffusers をコピーしている(ASL 2.0) def shave_segments(path, n_shave_prefix_segments=1): """ Removes segments. Positive values shave the first segments, negative shave the last segments. """ if n_shave_prefix_segments >= 0: return ".".join(path.split(".")[n_shave_prefix_segments:]) else: return ".".join(path.split(".")[:n_shave_prefix_segments]) def renew_resnet_paths(old_list, n_shave_prefix_segments=0): """ Updates paths inside resnets to the new naming scheme (local renaming) """ mapping = [] for old_item in old_list: new_item = old_item.replace("in_layers.0", "norm1") new_item = new_item.replace("in_layers.2", "conv1") new_item = new_item.replace("out_layers.0", "norm2") new_item = new_item.replace("out_layers.3", "conv2") new_item = new_item.replace("emb_layers.1", "time_emb_proj") new_item = new_item.replace("skip_connection", "conv_shortcut") new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) mapping.append({"old": old_item, "new": new_item}) return mapping def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): """ Updates paths inside resnets to the new naming scheme (local renaming) """ mapping = [] for old_item in old_list: new_item = old_item new_item = new_item.replace("nin_shortcut", "conv_shortcut") new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) mapping.append({"old": old_item, "new": new_item}) return mapping def renew_attention_paths(old_list, n_shave_prefix_segments=0): """ Updates paths inside attentions to the new naming scheme (local renaming) """ mapping = [] for old_item in old_list: new_item = old_item # new_item = new_item.replace('norm.weight', 'group_norm.weight') # new_item = new_item.replace('norm.bias', 'group_norm.bias') # new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') # new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') # new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) mapping.append({"old": old_item, "new": new_item}) return mapping def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): """ Updates paths inside attentions to the new naming scheme (local renaming) """ mapping = [] for old_item in old_list: new_item = old_item new_item = new_item.replace("norm.weight", "group_norm.weight") new_item = new_item.replace("norm.bias", "group_norm.bias") new_item = new_item.replace("q.weight", "query.weight") new_item = new_item.replace("q.bias", "query.bias") new_item = new_item.replace("k.weight", "key.weight") new_item = new_item.replace("k.bias", "key.bias") new_item = new_item.replace("v.weight", "value.weight") new_item = new_item.replace("v.bias", "value.bias") new_item = new_item.replace("proj_out.weight", "proj_attn.weight") new_item = new_item.replace("proj_out.bias", "proj_attn.bias") new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) mapping.append({"old": old_item, "new": new_item}) return mapping def assign_to_checkpoint( paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None ): """ This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits attention layers, and takes into account additional replacements that may arise. Assigns the weights to the new checkpoint. """ assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): old_tensor = old_checkpoint[path] channels = old_tensor.shape[0] // 3 target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) query, key, value = old_tensor.split(channels // num_heads, dim=1) checkpoint[path_map["query"]] = query.reshape(target_shape) checkpoint[path_map["key"]] = key.reshape(target_shape) checkpoint[path_map["value"]] = value.reshape(target_shape) for path in paths: new_path = path["new"] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") if additional_replacements is not None: for replacement in additional_replacements: new_path = new_path.replace(replacement["old"], replacement["new"]) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] else: checkpoint[new_path] = old_checkpoint[path["old"]] def conv_attn_to_linear(checkpoint): keys = list(checkpoint.keys()) attn_keys = ["query.weight", "key.weight", "value.weight"] for key in keys: if ".".join(key.split(".")[-2:]) in attn_keys: if checkpoint[key].ndim > 2: checkpoint[key] = checkpoint[key][:, :, 0, 0] elif "proj_attn.weight" in key: if checkpoint[key].ndim > 2: checkpoint[key] = checkpoint[key][:, :, 0] def convert_ldm_unet_checkpoint(checkpoint, config): """ Takes a state dict and a config, and returns a converted checkpoint. """ # extract state_dict for UNet unet_state_dict = {} unet_key = "model.diffusion_model." keys = list(checkpoint.keys()) for key in keys: if key.startswith(unet_key): unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) new_checkpoint = {} new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] # Retrieves the keys for the input blocks only num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) input_blocks = { layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] for layer_id in range(num_input_blocks) } # Retrieves the keys for the middle blocks only num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) middle_blocks = { layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] for layer_id in range(num_middle_blocks) } # Retrieves the keys for the output blocks only num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) output_blocks = { layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] for layer_id in range(num_output_blocks) } for i in range(1, num_input_blocks): block_id = (i - 1) // (config["layers_per_block"] + 1) layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) resnets = [ key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key ] attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] if f"input_blocks.{i}.0.op.weight" in unet_state_dict: new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( f"input_blocks.{i}.0.op.weight" ) new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( f"input_blocks.{i}.0.op.bias" ) paths = renew_resnet_paths(resnets) meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint( paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config ) if len(attentions): paths = renew_attention_paths(attentions) meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} assign_to_checkpoint( paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config ) resnet_0 = middle_blocks[0] attentions = middle_blocks[1] resnet_1 = middle_blocks[2] resnet_0_paths = renew_resnet_paths(resnet_0) assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) resnet_1_paths = renew_resnet_paths(resnet_1) assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) attentions_paths = renew_attention_paths(attentions) meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} assign_to_checkpoint( attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config ) for i in range(num_output_blocks): block_id = i // (config["layers_per_block"] + 1) layer_in_block_id = i % (config["layers_per_block"] + 1) output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] output_block_list = {} for layer in output_block_layers: layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) if layer_id in output_block_list: output_block_list[layer_id].append(layer_name) else: output_block_list[layer_id] = [layer_name] if len(output_block_list) > 1: resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] resnet_0_paths = renew_resnet_paths(resnets) paths = renew_resnet_paths(resnets) meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint( paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config ) if ["conv.weight", "conv.bias"] in output_block_list.values(): index = list(output_block_list.values()).index(["conv.weight", "conv.bias"]) new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ f"output_blocks.{i}.{index}.conv.weight" ] new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ f"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(attentions) == 2: attentions = [] if len(attentions): paths = renew_attention_paths(attentions) meta_path = { "old": f"output_blocks.{i}.1", "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", } assign_to_checkpoint( paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config ) else: resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) for path in resnet_0_paths: old_path = ".".join(["output_blocks", str(i), path["old"]]) new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) new_checkpoint[new_path] = unet_state_dict[old_path] return new_checkpoint def convert_ldm_vae_checkpoint(checkpoint, config): # extract state dict for VAE vae_state_dict = {} vae_key = "first_stage_model." keys = list(checkpoint.keys()) for key in keys: if key.startswith(vae_key): vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) new_checkpoint = {} new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) down_blocks = { layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) } # Retrieves the keys for the decoder up blocks only num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) up_blocks = { layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) } for i in range(num_down_blocks): resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.weight" ) new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.bias" ) paths = renew_vae_resnet_paths(resnets) meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] num_mid_res_blocks = 2 for i in range(1, num_mid_res_blocks + 1): resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] paths = renew_vae_resnet_paths(resnets) meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] paths = renew_vae_attention_paths(mid_attentions) meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) conv_attn_to_linear(new_checkpoint) for i in range(num_up_blocks): block_id = num_up_blocks - 1 - i resnets = [ key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key ] if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.weight" ] new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.bias" ] paths = renew_vae_resnet_paths(resnets) meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] num_mid_res_blocks = 2 for i in range(1, num_mid_res_blocks + 1): resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] paths = renew_vae_resnet_paths(resnets) meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] paths = renew_vae_attention_paths(mid_attentions) meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) conv_attn_to_linear(new_checkpoint) return new_checkpoint def create_unet_diffusers_config(): """ Creates a config for the diffusers based on the config of the LDM model. """ # unet_params = original_config.model.params.unet_config.params block_out_channels = [UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT] down_block_types = [] resolution = 1 for i in range(len(block_out_channels)): block_type = "CrossAttnDownBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "DownBlock2D" down_block_types.append(block_type) if i != len(block_out_channels) - 1: resolution *= 2 up_block_types = [] for i in range(len(block_out_channels)): block_type = "CrossAttnUpBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "UpBlock2D" up_block_types.append(block_type) resolution //= 2 config = dict( sample_size=UNET_PARAMS_IMAGE_SIZE, in_channels=UNET_PARAMS_IN_CHANNELS, out_channels=UNET_PARAMS_OUT_CHANNELS, down_block_types=tuple(down_block_types), up_block_types=tuple(up_block_types), block_out_channels=tuple(block_out_channels), layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS, cross_attention_dim=UNET_PARAMS_CONTEXT_DIM, attention_head_dim=UNET_PARAMS_NUM_HEADS, ) return config def create_vae_diffusers_config(): """ Creates a config for the diffusers based on the config of the LDM model. """ # vae_params = original_config.model.params.first_stage_config.params.ddconfig # _ = original_config.model.params.first_stage_config.params.embed_dim block_out_channels = [VAE_PARAMS_CH * mult for mult in VAE_PARAMS_CH_MULT] down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) config = dict( sample_size=VAE_PARAMS_RESOLUTION, in_channels=VAE_PARAMS_IN_CHANNELS, out_channels=VAE_PARAMS_OUT_CH, down_block_types=tuple(down_block_types), up_block_types=tuple(up_block_types), block_out_channels=tuple(block_out_channels), latent_channels=VAE_PARAMS_Z_CHANNELS, layers_per_block=VAE_PARAMS_NUM_RES_BLOCKS, ) return config def convert_ldm_clip_checkpoint(checkpoint): text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") keys = list(checkpoint.keys()) text_model_dict = {} for key in keys: if key.startswith("cond_stage_model.transformer"): text_model_dict[key[len("cond_stage_model.transformer."):]] = checkpoint[key] text_model.load_state_dict(text_model_dict) return text_model # endregion # region Diffusers->StableDiffusion の変換コード # convert_diffusers_to_original_stable_diffusion をコピーしている(ASL 2.0) def convert_unet_state_dict(unet_state_dict): unet_conversion_map = [ # (stable-diffusion, HF Diffusers) ("time_embed.0.weight", "time_embedding.linear_1.weight"), ("time_embed.0.bias", "time_embedding.linear_1.bias"), ("time_embed.2.weight", "time_embedding.linear_2.weight"), ("time_embed.2.bias", "time_embedding.linear_2.bias"), ("input_blocks.0.0.weight", "conv_in.weight"), ("input_blocks.0.0.bias", "conv_in.bias"), ("out.0.weight", "conv_norm_out.weight"), ("out.0.bias", "conv_norm_out.bias"), ("out.2.weight", "conv_out.weight"), ("out.2.bias", "conv_out.bias"), ] unet_conversion_map_resnet = [ # (stable-diffusion, HF Diffusers) ("in_layers.0", "norm1"), ("in_layers.2", "conv1"), ("out_layers.0", "norm2"), ("out_layers.3", "conv2"), ("emb_layers.1", "time_emb_proj"), ("skip_connection", "conv_shortcut"), ] unet_conversion_map_layer = [] for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." sd_up_res_prefix = f"output_blocks.{3*i + j}.0." unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) hf_mid_atn_prefix = "mid_block.attentions.0." sd_mid_atn_prefix = "middle_block.1." unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): hf_mid_res_prefix = f"mid_block.resnets.{j}." sd_mid_res_prefix = f"middle_block.{2*j}." unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. mapping = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: mapping[hf_name] = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: v = v.replace(hf_part, sd_part) mapping[k] = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: v = v.replace(hf_part, sd_part) mapping[k] = v new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # endregion def load_stable_diffusion_checkpoint(ckpt_path): checkpoint = torch.load(ckpt_path, map_location="cpu")["state_dict"] # Convert the UNet2DConditionModel model. unet_config = create_unet_diffusers_config() converted_unet_checkpoint = convert_ldm_unet_checkpoint(checkpoint, unet_config) unet = UNet2DConditionModel(**unet_config) unet.load_state_dict(converted_unet_checkpoint) # Convert the VAE model. vae_config = create_vae_diffusers_config() converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config) vae = AutoencoderKL(**vae_config) vae.load_state_dict(converted_vae_checkpoint) # convert text_model text_model = convert_ldm_clip_checkpoint(checkpoint) return text_model, vae, unet def save_stable_diffusion_checkpoint(output_file, text_encoder, unet, ckpt_path): # VAEがメモリ上にないので、もう一度VAEを含めて読み込む state_dict = torch.load(ckpt_path, map_location="cpu")['state_dict'] # Convert the UNet model unet_state_dict = convert_unet_state_dict(unet.state_dict()) for k, v in unet_state_dict.items(): key = "model.diffusion_model." + k assert key in state_dict, f"Illegal key in save SD: {key}" state_dict[key] = v # Convert the text encoder model text_enc_dict = text_encoder.state_dict() # 変換不要 for k, v in text_enc_dict.items(): key = "cond_stage_model.transformer." + k assert key in state_dict, f"Illegal key in save SD: {key}" state_dict[key] = v # Put together new checkpoint state_dict = {"state_dict": state_dict} torch.save(state_dict, output_file) def train(args): fine_tuning = args.fine_tuning cache_latents = args.cache_latents # latentsをキャッシュする場合のオプション設定を確認する if cache_latents: assert args.face_crop_aug_range is None and not args.random_crop, "when caching latents, crop aug cannot be used / latentをキャッシュするときは切り出しは使えません" assert not args.flip_aug and not args.color_aug, "when caching latents, augmentation cannot be used / latentをキャッシュするときはaugmentationは使えません" # モデル形式のオプション設定を確認する use_stable_diffusion_format = os.path.isfile(args.pretrained_model_name_or_path) assert args.save_every_n_epochs is None or use_stable_diffusion_format, "when loading Diffusers model, save_every_n_epochs does not work / Diffusersのモデルを読み込むときにはsave_every_n_epochsオプションは無効になります" if args.seed is not None: set_seed(args.seed) # 学習データを用意する def load_dreambooth_dir(dir): tokens = os.path.basename(dir).split('_') try: n_repeats = int(tokens[0]) except ValueError as e: print(f"no 'n_repeats' in directory name / DreamBoothのディレクトリ名に繰り返し回数がないようです: {dir}") raise e caption = '_'.join(tokens[1:]) img_paths = glob.glob(os.path.join(dir, "*.png")) + glob.glob(os.path.join(dir, "*.jpg")) return n_repeats, [(ip, caption) for ip in img_paths] print("prepare train images.") train_img_path_captions = [] if fine_tuning: img_paths = glob.glob(os.path.join(args.train_data_dir, "*.png")) + glob.glob(os.path.join(args.train_data_dir, "*.jpg")) for img_path in tqdm(img_paths): # captionの候補ファイル名を作る base_name = os.path.splitext(img_path)[0] base_name_face_det = base_name tokens = base_name.split("_") if len(tokens) >= 5: base_name_face_det = "_".join(tokens[:-4]) cap_paths = [base_name + '.txt', base_name + '.caption', base_name_face_det+'.txt', base_name_face_det+'.caption'] caption = None for cap_path in cap_paths: if os.path.isfile(cap_path): with open(cap_path, "rt", encoding='utf-8') as f: caption = f.readlines()[0].strip() break assert caption is not None and len(caption) > 0, f"no caption / キャプションファイルが見つからないか、captionが空です: {cap_paths}" train_img_path_captions.append((img_path, caption)) else: train_dirs = os.listdir(args.train_data_dir) for dir in train_dirs: n_repeats, img_caps = load_dreambooth_dir(os.path.join(args.train_data_dir, dir)) for _ in range(n_repeats): train_img_path_captions.extend(img_caps) print(f"{len(train_img_path_captions)} train images.") if fine_tuning: reg_img_path_captions = [] else: print("prepare reg images.") reg_img_path_captions = [] if args.reg_data_dir: reg_dirs = os.listdir(args.reg_data_dir) for dir in reg_dirs: n_repeats, img_caps = load_dreambooth_dir(os.path.join(args.reg_data_dir, dir)) for _ in range(n_repeats): reg_img_path_captions.extend(img_caps) print(f"{len(reg_img_path_captions)} reg images.") if args.debug_dataset: # デバッグ時はshuffleして実際のデータセット使用時に近づける(学習時はdata loaderでshuffleする) random.shuffle(train_img_path_captions) random.shuffle(reg_img_path_captions) # データセットを準備する resolution = tuple([int(r) for r in args.resolution.split(',')]) if len(resolution) == 1: resolution = (resolution[0], resolution[0]) assert len( resolution) == 2, f"resolution must be 'size' or 'width,height' / resolutionは'サイズ'または'幅','高さ'で指定してください: {args.resolution}" if args.face_crop_aug_range is not None: face_crop_aug_range = tuple([float(r) for r in args.face_crop_aug_range.split(',')]) assert len( face_crop_aug_range) == 2, f"face_crop_aug_range must be two floats / face_crop_aug_rangeは'下限,上限'で指定してください: {args.face_crop_aug_range}" else: face_crop_aug_range = None # tokenizerを読み込む print("prepare tokenizer") tokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH) print("prepare dataset") train_dataset = DreamBoothOrFineTuningDataset(fine_tuning, train_img_path_captions, reg_img_path_captions, tokenizer, resolution, args.flip_aug, args.color_aug, face_crop_aug_range, args.random_crop, args.shuffle_caption, args.debug_dataset) if args.debug_dataset: print(f"Total dataset length / データセットの長さ: {len(train_dataset)}") print("Escape for exit. / Escキーで中断、終了します") for example in train_dataset: im = example['image'] im = ((im.numpy() + 1.0) * 127.5).astype(np.uint8) im = np.transpose(im, (1, 2, 0)) # c,H,W -> H,W,c im = im[:, :, ::-1] # RGB -> BGR (OpenCV) print(f'caption: "{example["caption"]}", reg: {example["reg"]}') cv2.imshow("img", im) k = cv2.waitKey() cv2.destroyAllWindows() if k == 27: break return # acceleratorを準備する # gradient accumulationは複数モデルを学習する場合には対応していないとのことなので、1固定にする print("prepare accelerator") accelerator = Accelerator(gradient_accumulation_steps=1, mixed_precision=args.mixed_precision) # モデルを読み込む if use_stable_diffusion_format: print("load StableDiffusion checkpoint") text_encoder, vae, unet = load_stable_diffusion_checkpoint(args.pretrained_model_name_or_path) else: print("load Diffusers pretrained models") text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") # モデルに xformers とか memory efficient attention を組み込む replace_unet_modules(unet, args.mem_eff_attn, args.xformers) # mixed precisionに対応した型を用意しておき適宜castする weight_dtype = torch.float32 if args.mixed_precision == "fp16": weight_dtype = torch.float16 elif args.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # 学習を準備する if cache_latents: # latentをcacheする print("caching latents.") vae.to(accelerator.device, dtype=weight_dtype) latents_cache = {} examples = [] for i in tqdm(range(len(train_dataset))): # 画像を何度も読み込むのは無駄だが、面倒なので example = train_dataset[i] image_path = example['image_path'] if image_path not in latents_cache: with torch.no_grad(): pixel_values = example["image"].unsqueeze(0).to(device=accelerator.device, dtype=weight_dtype) latents = vae.encode(pixel_values).latent_dist.sample().to("cpu") latents_cache[image_path] = latents.squeeze(0) del example['image'] examples.append(example) train_dataset = LatentsCachedDataset(latents_cache, examples) del vae if torch.cuda.is_available(): torch.cuda.empty_cache() else: vae.requires_grad_(False) if args.gradient_checkpointing: unet.enable_gradient_checkpointing() text_encoder.gradient_checkpointing_enable() # 学習に必要なクラスを準備する print("prepare optimizer, data loader etc.") # 8-bit Adamを使う if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです") print("use 8-bit Adma optimizer") optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW trainable_params = (itertools.chain(unet.parameters(), text_encoder.parameters())) # betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略 optimizer = optimizer_class(trainable_params, lr=args.learning_rate) # dataloaderを準備する disable_padding = args.no_token_padding def collate_fn(examples): input_ids = [e['caption_ids'] for e in examples] regs = [e['reg'] for e in examples] # waitを変えたい if cache_latents: pixel_values = None latents = [e['latents'] for e in examples] latents = torch.stack(latents) else: pixel_values = [e['image'] for e in examples] pixel_values = torch.stack(pixel_values) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() latents = None # padしてTensor変換 if disable_padding: # paddingしない:padding==Trueはバッチの中の最大長に合わせるが、バッチサイズ1なので(やはりバグでは……?) input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids else: # paddingする input_ids = tokenizer.pad({"input_ids": input_ids}, padding='max_length', max_length=tokenizer.model_max_length, return_tensors='pt').input_ids loss_weights = [(1.0 if not reg else args.prior_loss_weight) for reg in regs] loss_weights = torch.FloatTensor(loss_weights) batch = {"input_ids": input_ids, "pixel_values": pixel_values, "latents": latents, "loss_weights": loss_weights} return batch train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn) # lr schedulerを用意する lr_scheduler = diffusers.optimization.get_scheduler("constant", optimizer, num_training_steps=args.max_train_steps) # acceleratorがなんかよろしくやってくれるらしい unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, text_encoder, optimizer, train_dataloader, lr_scheduler) if not cache_latents: vae.to(accelerator.device, dtype=weight_dtype) # epoch数を計算する num_train_epochs = math.ceil(args.max_train_steps / len(train_dataloader)) # 学習する total_batch_size = args.train_batch_size # * accelerator.num_processes print("running training / 学習開始") print(f" num examples / サンプル数: {len(train_dataset)}") print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") print(f" num epochs / epoch数: {num_train_epochs}") print(f" batch size per device / バッチサイズ: {args.train_batch_size}") print(f" total train batch size (with parallel & distributed) / 総バッチサイズ(並列学習含む): {total_batch_size}") print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process, desc="steps") global_step = 0 noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) if accelerator.is_main_process: accelerator.init_trackers("dreambooth") # 以下 train_dreambooth.py からほぼコピペ for epoch in range(num_train_epochs): print(f"epoch {epoch+1}/{num_train_epochs}") unet.train() text_encoder.train() # なんかunetだけでいいらしい?→最新版で修正されてた(;´Д`) いろいろ雑だな for step, batch in enumerate(train_dataloader): with accelerator.accumulate(unet): with torch.no_grad(): # latentに変換 if cache_latents: latents = batch["latents"].to(accelerator.device) else: latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * 0.18215 # Sample noise that we'll add to the latents noise = torch.randn_like(latents, device=latents.device) b_size = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Predict the noise residual noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample loss = torch.nn.functional.mse_loss(noise_pred.float(), noise.float(), reduction="none") loss = loss.mean([1, 2, 3]) loss_weights = batch["loss_weights"] # 各sampleごとのweight loss = loss * loss_weights loss = loss.mean() accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = (itertools.chain(unet.parameters(), text_encoder.parameters())) accelerator.clip_grad_norm_(params_to_clip, 1.0) # args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad(set_to_none=True) # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 logs = {"loss": loss.detach().item()} # , "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) # accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break accelerator.wait_for_everyone() if use_stable_diffusion_format and args.save_every_n_epochs is not None: if (epoch + 1) % args.save_every_n_epochs == 0: print("saving check point.") os.makedirs(args.output_dir, exist_ok=True) ckpt_file = os.path.join(args.output_dir, EPOCH_CHECKPOINT_NAME.format(epoch + 1)) save_stable_diffusion_checkpoint(ckpt_file, accelerator.unwrap_model( text_encoder), accelerator.unwrap_model(unet), args.pretrained_model_name_or_path) # Create the pipeline using using the trained modules and save it. is_main_process = accelerator.is_main_process if is_main_process: unet = accelerator.unwrap_model(unet) text_encoder = accelerator.unwrap_model(text_encoder) accelerator.end_training() del accelerator # この後メモリを使うのでこれは消す if is_main_process: os.makedirs(args.output_dir, exist_ok=True) if use_stable_diffusion_format: print(f"save trained model as StableDiffusion checkpoint to {args.output_dir}") ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME) save_stable_diffusion_checkpoint(ckpt_file, text_encoder, unet, args.pretrained_model_name_or_path) else: print(f"save trained model as Diffusers to {args.output_dir}") pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=unet, text_encoder=text_encoder, ) pipeline.save_pretrained(args.output_dir) print("model saved.") # region モジュール入れ替え部 """ 高速化のためのモジュール入れ替え """ # FlashAttentionを使うCrossAttention # based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py # LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE # constants EPSILON = 1e-6 # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d # flash attention forwards and backwards # https://arxiv.org/abs/2205.14135 class FlashAttentionFunction(Function): @ staticmethod @ torch.no_grad() def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size): """ Algorithm 2 in the paper """ device = q.device dtype = q.dtype max_neg_value = -torch.finfo(q.dtype).max qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) o = torch.zeros_like(q) all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device) all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device) scale = (q.shape[-1] ** -0.5) if not exists(mask): mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size) else: mask = rearrange(mask, 'b n -> b 1 1 n') mask = mask.split(q_bucket_size, dim=-1) row_splits = zip( q.split(q_bucket_size, dim=-2), o.split(q_bucket_size, dim=-2), mask, all_row_sums.split(q_bucket_size, dim=-2), all_row_maxes.split(q_bucket_size, dim=-2), ) for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits): q_start_index = ind * q_bucket_size - qk_len_diff col_splits = zip( k.split(k_bucket_size, dim=-2), v.split(k_bucket_size, dim=-2), ) for k_ind, (kc, vc) in enumerate(col_splits): k_start_index = k_ind * k_bucket_size attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale if exists(row_mask): attn_weights.masked_fill_(~row_mask, max_neg_value) if causal and q_start_index < (k_start_index + k_bucket_size - 1): causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(q_start_index - k_start_index + 1) attn_weights.masked_fill_(causal_mask, max_neg_value) block_row_maxes = attn_weights.amax(dim=-1, keepdims=True) attn_weights -= block_row_maxes exp_weights = torch.exp(attn_weights) if exists(row_mask): exp_weights.masked_fill_(~row_mask, 0.) block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON) new_row_maxes = torch.maximum(block_row_maxes, row_maxes) exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc) exp_row_max_diff = torch.exp(row_maxes - new_row_maxes) exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes) new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values) row_maxes.copy_(new_row_maxes) row_sums.copy_(new_row_sums) ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size) ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes) return o @ staticmethod @ torch.no_grad() def backward(ctx, do): """ Algorithm 4 in the paper """ causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args q, k, v, o, l, m = ctx.saved_tensors device = q.device max_neg_value = -torch.finfo(q.dtype).max qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) dq = torch.zeros_like(q) dk = torch.zeros_like(k) dv = torch.zeros_like(v) row_splits = zip( q.split(q_bucket_size, dim=-2), o.split(q_bucket_size, dim=-2), do.split(q_bucket_size, dim=-2), mask, l.split(q_bucket_size, dim=-2), m.split(q_bucket_size, dim=-2), dq.split(q_bucket_size, dim=-2) ) for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits): q_start_index = ind * q_bucket_size - qk_len_diff col_splits = zip( k.split(k_bucket_size, dim=-2), v.split(k_bucket_size, dim=-2), dk.split(k_bucket_size, dim=-2), dv.split(k_bucket_size, dim=-2), ) for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits): k_start_index = k_ind * k_bucket_size attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale if causal and q_start_index < (k_start_index + k_bucket_size - 1): causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(q_start_index - k_start_index + 1) attn_weights.masked_fill_(causal_mask, max_neg_value) exp_attn_weights = torch.exp(attn_weights - mc) if exists(row_mask): exp_attn_weights.masked_fill_(~row_mask, 0.) p = exp_attn_weights / lc dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc) dp = einsum('... i d, ... j d -> ... i j', doc, vc) D = (doc * oc).sum(dim=-1, keepdims=True) ds = p * scale * (dp - D) dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc) dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc) dqc.add_(dq_chunk) dkc.add_(dk_chunk) dvc.add_(dv_chunk) return dq, dk, dv, None, None, None, None def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers): if mem_eff_attn: replace_unet_cross_attn_to_memory_efficient() elif xformers: replace_unet_cross_attn_to_xformers() def replace_unet_cross_attn_to_memory_efficient(): print("Replace CrossAttention.forward to use FlashAttention") flash_func = FlashAttentionFunction def forward_flash_attn(self, x, context=None, mask=None): q_bucket_size = 512 k_bucket_size = 1024 h = self.heads q = self.to_q(x) context = context if context is not None else x context = context.to(x.dtype) k = self.to_k(context) v = self.to_v(context) del context, x q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) diffusers.models.attention.CrossAttention.forward = forward_flash_attn def replace_unet_cross_attn_to_xformers(): print("Replace CrossAttention.forward to use xformers") try: import xformers.ops except ImportError: raise ImportError("No xformers / xformersがインストールされていないようです") def forward_xformers(self, x, context=None, mask=None): h = self.heads q_in = self.to_q(x) context = default(context, x) k_in = self.to_k(context) v_in = self.to_v(context) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) del q_in, k_in, v_in out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる out = rearrange(out, 'b n h d -> b n (h d)', h=h) return self.to_out(out) diffusers.models.attention.CrossAttention.forward = forward_xformers # endregion if __name__ == '__main__': # torch.cuda.set_per_process_memory_fraction(0.48) parser = argparse.ArgumentParser() parser.add_argument("--pretrained_model_name_or_path", type=str, default=None, help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル") parser.add_argument("--fine_tuning", action="store_true", help="fine tune the model instead of DreamBooth / DreamBoothではなくfine tuningする") parser.add_argument("--shuffle_caption", action="store_true", help="shuffle comma-separated caption when fine tuning / fine tuning時にコンマで区切られたcaptionの各要素をshuffleする") parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ") parser.add_argument("--reg_data_dir", type=str, default=None, help="directory for regularization images / 正則化画像データのディレクトリ") parser.add_argument("--output_dir", type=str, default=None, help="directory to output trained model, save as same format as input / 学習後のモデル出力先ディレクトリ(入力と同じ形式で保存)") parser.add_argument("--save_every_n_epochs", type=int, default=None, help="save checkpoint every N epochs (only supports in StableDiffusion checkpoint) / 学習中のモデルを指定エポックごとに保存します(StableDiffusion形式のモデルを読み込んだ場合のみ有効)") parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="loss weight for regularization images / 正則化画像のlossの重み") parser.add_argument("--no_token_padding", action="store_true", help="disable token padding (same as Diffuser's DreamBooth) / トークンのpaddingを無効にする(Diffusers版DreamBoothと同じ動作)") parser.add_argument("--color_aug", action="store_true", help="enable weak color augmentation / 学習時に色合いのaugmentationを有効にする") parser.add_argument("--flip_aug", action="store_true", help="enable horizontal flip augmentation / 学習時に左右反転のaugmentationを有効にする") parser.add_argument("--face_crop_aug_range", type=str, default=None, help="enable face-centered crop augmentation and its range (e.g. 2.0,4.0) / 学習時に顔を中心とした切り出しaugmentationを有効にするときは倍率を指定する(例:2.0,4.0)") parser.add_argument("--random_crop", action="store_true", help="enable random crop (for style training in face-centered crop augmentation) / ランダムな切り出しを有効にする(顔を中心としたaugmentationを行うときに画風の学習用に指定する)") parser.add_argument("--debug_dataset", action="store_true", help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)") parser.add_argument("--resolution", type=str, default=None, help="resolution in training ('size' or 'width,height') / 学習時の画像解像度('サイズ'指定、または'幅,高さ'指定)") parser.add_argument("--train_batch_size", type=int, default=1, help="batch size for training (1 means one train or reg data, not train/reg pair) / 学習時のバッチサイズ(1でtrain/regをそれぞれ1件ずつ学習)") parser.add_argument("--use_8bit_adam", action="store_true", help="use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使う(bitsandbytesのインストールが必要)") parser.add_argument("--mem_eff_attn", action="store_true", help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う") parser.add_argument("--xformers", action="store_true", help="use xformers for CrossAttention / CrossAttentionにxformersを使う") parser.add_argument("--cache_latents", action="store_true", help="cache latents to reduce memory (augmentations must be disabled) / メモリ削減のためにlatentをcacheする(augmentationは使用不可)") parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率") parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数") parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed") parser.add_argument("--gradient_checkpointing", action="store_true", help="enable gradient checkpointing / grandient checkpointingを有効にする") parser.add_argument("--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度") args = parser.parse_args() train(args)