import argparse import glob import os import json import random from PIL import Image from tqdm import tqdm import numpy as np import torch from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from blip.blip import blip_decoder import library.train_util as train_util DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') IMAGE_SIZE = 384 # 正方形でいいのか? という気がするがソースがそうなので IMAGE_TRANSFORM = transforms.Compose([ transforms.Resize((IMAGE_SIZE, IMAGE_SIZE), interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) # 共通化したいが微妙に処理が異なる…… class ImageLoadingTransformDataset(torch.utils.data.Dataset): def __init__(self, image_paths): self.images = image_paths def __len__(self): return len(self.images) def __getitem__(self, idx): img_path = self.images[idx] try: image = Image.open(img_path).convert("RGB") # convert to tensor temporarily so dataloader will accept it tensor = IMAGE_TRANSFORM(image) except Exception as e: print(f"Could not load image path / 画像を読み込めません: {img_path}, error: {e}") return None return (tensor, img_path) def collate_fn_remove_corrupted(batch): """Collate function that allows to remove corrupted examples in the dataloader. It expects that the dataloader returns 'None' when that occurs. The 'None's in the batch are removed. """ # Filter out all the Nones (corrupted examples) batch = list(filter(lambda x: x is not None, batch)) return batch def main(args): # fix the seed for reproducibility seed = args.seed # + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) if not os.path.exists("blip"): args.train_data_dir = os.path.abspath(args.train_data_dir) # convert to absolute path cwd = os.getcwd() print('Current Working Directory is: ', cwd) os.chdir('finetune') print(f"load images from {args.train_data_dir}") image_paths = train_util.glob_images(args.train_data_dir) print(f"found {len(image_paths)} images.") print(f"loading BLIP caption: {args.caption_weights}") model = blip_decoder(pretrained=args.caption_weights, image_size=IMAGE_SIZE, vit='large', med_config="./blip/med_config.json") model.eval() model = model.to(DEVICE) print("BLIP loaded") # captioningする def run_batch(path_imgs): imgs = torch.stack([im for _, im in path_imgs]).to(DEVICE) with torch.no_grad(): if args.beam_search: captions = model.generate(imgs, sample=False, num_beams=args.num_beams, max_length=args.max_length, min_length=args.min_length) else: captions = model.generate(imgs, sample=True, top_p=args.top_p, max_length=args.max_length, min_length=args.min_length) for (image_path, _), caption in zip(path_imgs, captions): with open(os.path.splitext(image_path)[0] + args.caption_extension, "wt", encoding='utf-8') as f: f.write(caption + "\n") if args.debug: print(image_path, caption) # 読み込みの高速化のためにDataLoaderを使うオプション if args.max_data_loader_n_workers is not None: dataset = ImageLoadingTransformDataset(image_paths) data = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.max_data_loader_n_workers, collate_fn=collate_fn_remove_corrupted, drop_last=False) else: data = [[(None, ip)] for ip in image_paths] b_imgs = [] for data_entry in tqdm(data, smoothing=0.0): for data in data_entry: if data is None: continue img_tensor, image_path = data if img_tensor is None: try: raw_image = Image.open(image_path) if raw_image.mode != 'RGB': raw_image = raw_image.convert("RGB") img_tensor = IMAGE_TRANSFORM(raw_image) except Exception as e: print(f"Could not load image path / 画像を読み込めません: {image_path}, error: {e}") continue b_imgs.append((image_path, img_tensor)) if len(b_imgs) >= args.batch_size: run_batch(b_imgs) b_imgs.clear() if len(b_imgs) > 0: run_batch(b_imgs) print("done!") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ") parser.add_argument("--caption_weights", type=str, default="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth", help="BLIP caption weights (model_large_caption.pth) / BLIP captionの重みファイル(model_large_caption.pth)") parser.add_argument("--caption_extention", type=str, default=None, help="extension of caption file (for backward compatibility) / 出力されるキャプションファイルの拡張子(スペルミスしていたのを残してあります)") parser.add_argument("--caption_extension", type=str, default=".caption", help="extension of caption file / 出力されるキャプションファイルの拡張子") parser.add_argument("--beam_search", action="store_true", help="use beam search (default Nucleus sampling) / beam searchを使う(このオプション未指定時はNucleus sampling)") parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ") parser.add_argument("--max_data_loader_n_workers", type=int, default=None, help="enable image reading by DataLoader with this number of workers (faster) / DataLoaderによる画像読み込みを有効にしてこのワーカー数を適用する(読み込みを高速化)") parser.add_argument("--num_beams", type=int, default=1, help="num of beams in beam search /beam search時のビーム数(多いと精度が上がるが時間がかかる)") parser.add_argument("--top_p", type=float, default=0.9, help="top_p in Nucleus sampling / Nucleus sampling時のtop_p") parser.add_argument("--max_length", type=int, default=75, help="max length of caption / captionの最大長") parser.add_argument("--min_length", type=int, default=5, help="min length of caption / captionの最小長") parser.add_argument('--seed', default=42, type=int, help='seed for reproducibility / 再現性を確保するための乱数seed') parser.add_argument("--debug", action="store_true", help="debug mode") args = parser.parse_args() # スペルミスしていたオプションを復元する if args.caption_extention is not None: args.caption_extension = args.caption_extention main(args)