import os import subprocess import gradio as gr from .common_gui_functions import ( get_file_path, get_saveasfile_path, ) folder_symbol = '\U0001f4c2' # 📂 refresh_symbol = '\U0001f504' # 🔄 save_style_symbol = '\U0001f4be' # 💾 document_symbol = '\U0001F4C4' # 📄 PYTHON = 'python3' if os.name == 'posix' else './venv/Scripts/python.exe' def extract_lycoris_locon( db_model, base_model, output_name, device, is_v2, mode, linear_dim, conv_dim, linear_threshold, conv_threshold, linear_ratio, conv_ratio, linear_quantile, conv_quantile, use_sparse_bias, sparsity, disable_cp, ): # Check for caption_text_input if db_model == '': show_message_box('Invalid finetuned model file') return if base_model == '': show_message_box('Invalid base model file') return # Check if source model exist if not os.path.isfile(db_model): show_message_box('The provided finetuned model is not a file') return if not os.path.isfile(base_model): show_message_box('The provided base model is not a file') return run_cmd = f'{PYTHON} "{os.path.join("tools","lycoris_locon_extract.py")}"' if is_v2: run_cmd += f' --is_v2' run_cmd += f' --device {device}' run_cmd += f' --mode {mode}' run_cmd += f' --safetensors' run_cmd += f' --linear_dim {linear_dim}' run_cmd += f' --conv_dim {conv_dim}' run_cmd += f' --linear_threshold {linear_threshold}' run_cmd += f' --conv_threshold {conv_threshold}' run_cmd += f' --linear_ratio {linear_ratio}' run_cmd += f' --conv_ratio {conv_ratio}' run_cmd += f' --linear_quantile {linear_quantile}' run_cmd += f' --conv_quantile {conv_quantile}' if use_sparse_bias: run_cmd += f' --use_sparse_bias' run_cmd += f' --sparsity {sparsity}' if disable_cp: run_cmd += f' --disable_cp' run_cmd += f' "{base_model}"' run_cmd += f' "{db_model}"' run_cmd += f' "{output_name}"' print(run_cmd) # Run the command if os.name == 'posix': os.system(run_cmd) else: subprocess.run(run_cmd) ### # Gradio UI ### # def update_mode(mode): # # 'fixed', 'threshold','ratio','quantile' # if mode == 'fixed': # return gr.Row.update(visible=True), gr.Row.update(visible=False), gr.Row.update(visible=False), gr.Row.update(visible=False) # if mode == 'threshold': # return gr.Row.update(visible=False), gr.Row.update(visible=True), gr.Row.update(visible=False), gr.Row.update(visible=False) # if mode == 'ratio': # return gr.Row.update(visible=False), gr.Row.update(visible=False), gr.Row.update(visible=True), gr.Row.update(visible=False) # if mode == 'threshold': # return gr.Row.update(visible=False), gr.Row.update(visible=False), gr.Row.update(visible=False), gr.Row.update(visible=True) def update_mode(mode): # Create a list of possible mode values modes = ['fixed', 'threshold', 'ratio', 'quantile'] # Initialize an empty list to store visibility updates updates = [] # Iterate through the possible modes for m in modes: # Add a visibility update for each mode, setting it to True if the input mode matches the current mode in the loop updates.append(gr.Row.update(visible=(mode == m))) # Return the visibility updates as a tuple return tuple(updates) def gradio_extract_lycoris_locon_tab(): with gr.Tab('Extract LyCORIS LoCON'): gr.Markdown( 'This utility can extract a LyCORIS LoCon network from a finetuned model.' ) lora_ext = gr.Textbox( value='*.safetensors', visible=False ) # lora_ext = gr.Textbox(value='*.safetensors *.pt', visible=False) lora_ext_name = gr.Textbox(value='LoRA model types', visible=False) model_ext = gr.Textbox(value='*.safetensors *.ckpt', visible=False) model_ext_name = gr.Textbox(value='Model types', visible=False) with gr.Row(): db_model = gr.Textbox( label='Finetuned model', placeholder='Path to the finetuned model to extract', interactive=True, ) button_db_model_file = gr.Button( folder_symbol, elem_id='open_folder_small' ) button_db_model_file.click( lambda input1, input2, input3, *args, **kwargs: lambda *args, **kwargs: get_file_path(*args), inputs=[db_model, model_ext, model_ext_name], outputs=db_model, show_progress=False, ) base_model = gr.Textbox( label='Stable Diffusion base model', placeholder='Stable Diffusion original model: ckpt or safetensors file', interactive=True, ) button_base_model_file = gr.Button( folder_symbol, elem_id='open_folder_small' ) button_base_model_file.click( lambda *args, **kwargs: get_file_path(*args), inputs=[base_model, model_ext, model_ext_name], outputs=base_model, show_progress=False, ) with gr.Row(): output_name = gr.Textbox( label='Save to', placeholder='path where to save the extracted LoRA model...', interactive=True, ) button_output_name = gr.Button( folder_symbol, elem_id='open_folder_small' ) button_output_name.click( get_saveasfile_path, inputs=[output_name, lora_ext, lora_ext_name], outputs=output_name, show_progress=False, ) device = gr.Dropdown( label='Device', choices=[ 'cpu', 'cuda', ], value='cuda', interactive=True, ) is_v2 = gr.Checkbox(label='is v2', value=False, interactive=True) mode = gr.Dropdown( label='Mode', choices=['fixed', 'threshold', 'ratio', 'quantile'], value='fixed', interactive=True, ) with gr.Row(visible=True) as fixed: linear_dim = gr.Slider( minimum=1, maximum=1024, label='Network Dimension', value=1, step=1, interactive=True, ) conv_dim = gr.Slider( minimum=1, maximum=1024, label='Conv Dimension', value=1, step=1, interactive=True, ) with gr.Row(visible=False) as threshold: linear_threshold = gr.Slider( minimum=0, maximum=1, label='Linear threshold', value=0, step=0.01, interactive=True, ) conv_threshold = gr.Slider( minimum=0, maximum=1, label='Conv threshold', value=0, step=0.01, interactive=True, ) with gr.Row(visible=False) as ratio: linear_ratio = gr.Slider( minimum=0, maximum=1, label='Linear ratio', value=0, step=0.01, interactive=True, ) conv_ratio = gr.Slider( minimum=0, maximum=1, label='Conv ratio', value=0, step=0.01, interactive=True, ) with gr.Row(visible=False) as quantile: linear_quantile = gr.Slider( minimum=0, maximum=1, label='Linear quantile', value=0.75, step=0.01, interactive=True, ) conv_quantile = gr.Slider( minimum=0, maximum=1, label='Conv quantile', value=0.75, step=0.01, interactive=True, ) with gr.Row(): use_sparse_bias = gr.Checkbox( label='Use sparse biais', value=False, interactive=True ) sparsity = gr.Slider( minimum=0, maximum=1, label='Sparsity', value=0.98, step=0.01, interactive=True, ) disable_cp = gr.Checkbox( label='Disable CP decomposition', value=False, interactive=True ) mode.change( update_mode, inputs=[mode], outputs=[ fixed, threshold, ratio, quantile, ], ) extract_button = gr.Button('Extract LyCORIS LoCon') extract_button.click( extract_lycoris_locon, inputs=[ db_model, base_model, output_name, device, is_v2, mode, linear_dim, conv_dim, linear_threshold, conv_threshold, linear_ratio, conv_ratio, linear_quantile, conv_quantile, use_sparse_bias, sparsity, disable_cp, ], show_progress=False, )