from tkinter import filedialog, Tk import os import gradio as gr from easygui import msgbox import shutil folder_symbol = '\U0001f4c2' # 📂 refresh_symbol = '\U0001f504' # 🔄 save_style_symbol = '\U0001f4be' # 💾 document_symbol = '\U0001F4C4' # 📄 def get_dir_and_file(file_path): dir_path, file_name = os.path.split(file_path) return (dir_path, file_name) def has_ext_files(directory, extension): # Iterate through all the files in the directory for file in os.listdir(directory): # If the file name ends with extension, return True if file.endswith(extension): return True # If no extension files were found, return False return False def get_file_path( file_path='', defaultextension='.json', extension_name='Config files' ): current_file_path = file_path # print(f'current file path: {current_file_path}') initial_dir, initial_file = get_dir_and_file(file_path) root = Tk() root.wm_attributes('-topmost', 1) root.withdraw() file_path = filedialog.askopenfilename( filetypes=( (f'{extension_name}', f'{defaultextension}'), ('All files', '*'), ), defaultextension=defaultextension, initialfile=initial_file, initialdir=initial_dir, ) root.destroy() if file_path == '': file_path = current_file_path return file_path def get_any_file_path(file_path=''): current_file_path = file_path # print(f'current file path: {current_file_path}') initial_dir, initial_file = get_dir_and_file(file_path) root = Tk() root.wm_attributes('-topmost', 1) root.withdraw() file_path = filedialog.askopenfilename( initialdir=initial_dir, initialfile=initial_file, ) root.destroy() if file_path == '': file_path = current_file_path return file_path def remove_doublequote(file_path): if file_path != None: file_path = file_path.replace('"', '') return file_path def get_folder_path(folder_path=''): current_folder_path = folder_path initial_dir, initial_file = get_dir_and_file(folder_path) root = Tk() root.wm_attributes('-topmost', 1) root.withdraw() folder_path = filedialog.askdirectory(initialdir=initial_dir) root.destroy() if folder_path == '': folder_path = current_folder_path return folder_path def get_saveasfile_path( file_path='', defaultextension='.json', extension_name='Config files' ): current_file_path = file_path # print(f'current file path: {current_file_path}') initial_dir, initial_file = get_dir_and_file(file_path) root = Tk() root.wm_attributes('-topmost', 1) root.withdraw() save_file_path = filedialog.asksaveasfile( filetypes=( (f'{extension_name}', f'{defaultextension}'), ('All files', '*'), ), defaultextension=defaultextension, initialdir=initial_dir, initialfile=initial_file, ) root.destroy() # print(save_file_path) if save_file_path == None: file_path = current_file_path else: print(save_file_path.name) file_path = save_file_path.name # print(file_path) return file_path def get_saveasfilename_path( file_path='', extensions='*', extension_name='Config files' ): current_file_path = file_path # print(f'current file path: {current_file_path}') initial_dir, initial_file = get_dir_and_file(file_path) root = Tk() root.wm_attributes('-topmost', 1) root.withdraw() save_file_path = filedialog.asksaveasfilename( filetypes=((f'{extension_name}', f'{extensions}'), ('All files', '*')), defaultextension=extensions, initialdir=initial_dir, initialfile=initial_file, ) root.destroy() if save_file_path == '': file_path = current_file_path else: # print(save_file_path) file_path = save_file_path return file_path def add_pre_postfix( folder='', prefix='', postfix='', caption_file_ext='.caption' ): if not has_ext_files(folder, caption_file_ext): msgbox( f'No files with extension {caption_file_ext} were found in {folder}...' ) return if prefix == '' and postfix == '': return files = [f for f in os.listdir(folder) if f.endswith(caption_file_ext)] if not prefix == '': prefix = f'{prefix} ' if not postfix == '': postfix = f' {postfix}' for file in files: with open(os.path.join(folder, file), 'r+') as f: content = f.read() content = content.rstrip() f.seek(0, 0) f.write(f'{prefix}{content}{postfix}') f.close() def find_replace(folder='', caption_file_ext='.caption', find='', replace=''): print('Running caption find/replace') if not has_ext_files(folder, caption_file_ext): msgbox( f'No files with extension {caption_file_ext} were found in {folder}...' ) return if find == '': return files = [f for f in os.listdir(folder) if f.endswith(caption_file_ext)] for file in files: with open(os.path.join(folder, file), 'r', errors='ignore') as f: content = f.read() f.close content = content.replace(find, replace) with open(os.path.join(folder, file), 'w') as f: f.write(content) f.close() def color_aug_changed(color_aug): if color_aug: msgbox( 'Disabling "Cache latent" because "Color augmentation" has been selected...' ) return gr.Checkbox.update(value=False, interactive=False) else: return gr.Checkbox.update(value=True, interactive=True) def save_inference_file(output_dir, v2, v_parameterization, output_name): # List all files in the directory files = os.listdir(output_dir) # Iterate over the list of files for file in files: # Check if the file starts with the value of output_name if file.startswith(output_name): # Check if it is a file or a directory if os.path.isfile(os.path.join(output_dir, file)): # Split the file name and extension file_name, ext = os.path.splitext(file) # Copy the v2-inference-v.yaml file to the current file, with a .yaml extension if v2 and v_parameterization: print( f'Saving v2-inference-v.yaml as {output_dir}/{file_name}.yaml' ) shutil.copy( f'./v2_inference/v2-inference-v.yaml', f'{output_dir}/{file_name}.yaml', ) elif v2: print( f'Saving v2-inference.yaml as {output_dir}/{file_name}.yaml' ) shutil.copy( f'./v2_inference/v2-inference.yaml', f'{output_dir}/{file_name}.yaml', ) def set_pretrained_model_name_or_path_input(value, v2, v_parameterization): # define a list of substrings to search for substrings_v2 = [ 'stabilityai/stable-diffusion-2-1-base', 'stabilityai/stable-diffusion-2-base', ] # check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list if str(value) in substrings_v2: print('SD v2 model detected. Setting --v2 parameter') v2 = True v_parameterization = False return value, v2, v_parameterization # define a list of substrings to search for v-objective substrings_v_parameterization = [ 'stabilityai/stable-diffusion-2-1', 'stabilityai/stable-diffusion-2', ] # check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list if str(value) in substrings_v_parameterization: print( 'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization' ) v2 = True v_parameterization = True return value, v2, v_parameterization # define a list of substrings to v1.x substrings_v1_model = [ 'CompVis/stable-diffusion-v1-4', 'runwayml/stable-diffusion-v1-5', ] if str(value) in substrings_v1_model: v2 = False v_parameterization = False return value, v2, v_parameterization if value == 'custom': value = '' v2 = False v_parameterization = False return value, v2, v_parameterization ### ### Gradio common GUI section ### def gradio_config(): with gr.Accordion('Configuration file', open=False): with gr.Row(): button_open_config = gr.Button('Open 📂', elem_id='open_folder') button_save_config = gr.Button('Save 💾', elem_id='open_folder') button_save_as_config = gr.Button( 'Save as... 💾', elem_id='open_folder' ) config_file_name = gr.Textbox( label='', placeholder="type the configuration file path or use the 'Open' button above to select it...", interactive=True, ) return ( button_open_config, button_save_config, button_save_as_config, config_file_name, ) def gradio_source_model(): with gr.Tab('Source model'): # Define the input elements with gr.Row(): pretrained_model_name_or_path = gr.Textbox( label='Pretrained model name or path', placeholder='enter the path to custom model or name of pretrained model', ) pretrained_model_name_or_path_file = gr.Button( document_symbol, elem_id='open_folder_small' ) pretrained_model_name_or_path_file.click( get_any_file_path, inputs=pretrained_model_name_or_path, outputs=pretrained_model_name_or_path, ) pretrained_model_name_or_path_folder = gr.Button( folder_symbol, elem_id='open_folder_small' ) pretrained_model_name_or_path_folder.click( get_folder_path, inputs=pretrained_model_name_or_path, outputs=pretrained_model_name_or_path, ) model_list = gr.Dropdown( label='(Optional) Model Quick Pick', choices=[ 'custom', 'stabilityai/stable-diffusion-2-1-base', 'stabilityai/stable-diffusion-2-base', 'stabilityai/stable-diffusion-2-1', 'stabilityai/stable-diffusion-2', 'runwayml/stable-diffusion-v1-5', 'CompVis/stable-diffusion-v1-4', ], ) save_model_as = gr.Dropdown( label='Save trained model as', choices=[ 'same as source model', 'ckpt', 'diffusers', 'diffusers_safetensors', 'safetensors', ], value='safetensors', ) with gr.Row(): v2 = gr.Checkbox(label='v2', value=True) v_parameterization = gr.Checkbox( label='v_parameterization', value=False ) model_list.change( set_pretrained_model_name_or_path_input, inputs=[model_list, v2, v_parameterization], outputs=[ pretrained_model_name_or_path, v2, v_parameterization, ], ) return ( pretrained_model_name_or_path, v2, v_parameterization, save_model_as, model_list, ) def gradio_training( learning_rate_value='1e-6', lr_scheduler_value='constant', lr_warmup_value='0', ): with gr.Row(): train_batch_size = gr.Slider( minimum=1, maximum=32, label='Train batch size', value=1, step=1, ) epoch = gr.Textbox(label='Epoch', value=1) save_every_n_epochs = gr.Textbox(label='Save every N epochs', value=1) caption_extension = gr.Textbox( label='Caption Extension', placeholder='(Optional) Extension for caption files. default: .caption', ) with gr.Row(): mixed_precision = gr.Dropdown( label='Mixed precision', choices=[ 'no', 'fp16', 'bf16', ], value='fp16', ) save_precision = gr.Dropdown( label='Save precision', choices=[ 'float', 'fp16', 'bf16', ], value='fp16', ) num_cpu_threads_per_process = gr.Slider( minimum=1, maximum=os.cpu_count(), step=1, label='Number of CPU threads per core', value=2, ) seed = gr.Textbox(label='Seed', value=1234) cache_latents = gr.Checkbox(label='Cache latent', value=True) with gr.Row(): learning_rate = gr.Textbox( label='Learning rate', value=learning_rate_value ) lr_scheduler = gr.Dropdown( label='LR Scheduler', choices=[ 'constant', 'constant_with_warmup', 'cosine', 'cosine_with_restarts', 'linear', 'polynomial', ], value=lr_scheduler_value, ) lr_warmup = gr.Textbox( label='LR warmup (% of steps)', value=lr_warmup_value ) optimizer = gr.Dropdown( label='Optimizer', choices=[ 'AdamW', 'AdamW8bit', 'Adafactor', 'DAdaptation', 'Lion', 'SGDNesterov', 'SGDNesterov8bit' ], value="AdamW", interactive=True, ) with gr.Row(): optimizer_args = gr.Textbox( label='Optimizer extra arguments', placeholder='(Optional) eg: relative_step=True scale_parameter=True warmup_init=True' ) return ( learning_rate, lr_scheduler, lr_warmup, train_batch_size, epoch, save_every_n_epochs, mixed_precision, save_precision, num_cpu_threads_per_process, seed, caption_extension, cache_latents, optimizer, optimizer_args, ) def run_cmd_training(**kwargs): options = [ f' --learning_rate="{kwargs.get("learning_rate", "")}"' if kwargs.get('learning_rate') else '', f' --lr_scheduler="{kwargs.get("lr_scheduler", "")}"' if kwargs.get('lr_scheduler') else '', f' --lr_warmup_steps="{kwargs.get("lr_warmup_steps", "")}"' if kwargs.get('lr_warmup_steps') else '', f' --train_batch_size="{kwargs.get("train_batch_size", "")}"' if kwargs.get('train_batch_size') else '', f' --max_train_steps="{kwargs.get("max_train_steps", "")}"' if kwargs.get('max_train_steps') else '', f' --save_every_n_epochs="{kwargs.get("save_every_n_epochs", "")}"' if kwargs.get('save_every_n_epochs') else '', f' --mixed_precision="{kwargs.get("mixed_precision", "")}"' if kwargs.get('mixed_precision') else '', f' --save_precision="{kwargs.get("save_precision", "")}"' if kwargs.get('save_precision') else '', f' --seed="{kwargs.get("seed", "")}"' if kwargs.get('seed') else '', f' --caption_extension="{kwargs.get("caption_extension", "")}"' if kwargs.get('caption_extension') else '', ' --cache_latents' if kwargs.get('cache_latents') else '', # ' --use_lion_optimizer' if kwargs.get('optimizer') == 'Lion' else '', f' --optimizer_type="{kwargs.get("optimizer", "AdamW")}"', f' --optimizer_args {kwargs.get("optimizer_args", "")}' if not kwargs.get('optimizer_args') == '' else '', ] run_cmd = ''.join(options) return run_cmd # # This function takes a dictionary of keyword arguments and returns a string that can be used to run a command-line training script # def run_cmd_training(**kwargs): # arg_map = { # 'learning_rate': ' --learning_rate="{}"', # 'lr_scheduler': ' --lr_scheduler="{}"', # 'lr_warmup_steps': ' --lr_warmup_steps="{}"', # 'train_batch_size': ' --train_batch_size="{}"', # 'max_train_steps': ' --max_train_steps="{}"', # 'save_every_n_epochs': ' --save_every_n_epochs="{}"', # 'mixed_precision': ' --mixed_precision="{}"', # 'save_precision': ' --save_precision="{}"', # 'seed': ' --seed="{}"', # 'caption_extension': ' --caption_extension="{}"', # 'cache_latents': ' --cache_latents', # 'optimizer': ' --use_lion_optimizer' if kwargs.get('optimizer') == 'Lion' else '', # } # options = [arg_map[key].format(value) for key, value in kwargs.items() if key in arg_map and value] # cmd = ''.join(options) # return cmd def gradio_advanced_training(): with gr.Row(): keep_tokens = gr.Slider( label='Keep n tokens', value='0', minimum=0, maximum=32, step=1 ) clip_skip = gr.Slider( label='Clip skip', value='1', minimum=1, maximum=12, step=1 ) max_token_length = gr.Dropdown( label='Max Token Length', choices=[ '75', '150', '225', ], value='75', ) full_fp16 = gr.Checkbox( label='Full fp16 training (experimental)', value=False ) with gr.Row(): gradient_checkpointing = gr.Checkbox( label='Gradient checkpointing', value=False ) shuffle_caption = gr.Checkbox(label='Shuffle caption', value=False) persistent_data_loader_workers = gr.Checkbox( label='Persistent data loader', value=False ) mem_eff_attn = gr.Checkbox( label='Memory efficient attention', value=False ) with gr.Row(): use_8bit_adam = gr.Checkbox(label='Use 8bit adam', value=True) xformers = gr.Checkbox(label='Use xformers', value=True) color_aug = gr.Checkbox(label='Color augmentation', value=False) flip_aug = gr.Checkbox(label='Flip augmentation', value=False) with gr.Row(): bucket_no_upscale = gr.Checkbox( label="Don't upscale bucket resolution", value=True ) bucket_reso_steps = gr.Number( label='Bucket resolution steps', value=64 ) random_crop = gr.Checkbox( label='Random crop instead of center crop', value=False ) noise_offset = gr.Textbox( label='Noise offset (0 - 1)', placeholder='(Oprional) eg: 0.1' ) with gr.Row(): caption_dropout_every_n_epochs = gr.Number( label="Dropout caption every n epochs", value=0 ) caption_dropout_rate = gr.Slider( label="Rate of caption dropout", value=0, minimum=0, maximum=1 ) with gr.Row(): save_state = gr.Checkbox(label='Save training state', value=False) resume = gr.Textbox( label='Resume from saved training state', placeholder='path to "last-state" state folder to resume from', ) resume_button = gr.Button('📂', elem_id='open_folder_small') resume_button.click(get_folder_path, outputs=resume) max_train_epochs = gr.Textbox( label='Max train epoch', placeholder='(Optional) Override number of epoch', ) max_data_loader_n_workers = gr.Textbox( label='Max num workers for DataLoader', placeholder='(Optional) Override number of epoch. Default: 8', ) return ( use_8bit_adam, xformers, full_fp16, gradient_checkpointing, shuffle_caption, color_aug, flip_aug, clip_skip, mem_eff_attn, save_state, resume, max_token_length, max_train_epochs, max_data_loader_n_workers, keep_tokens, persistent_data_loader_workers, bucket_no_upscale, random_crop, bucket_reso_steps, caption_dropout_every_n_epochs, caption_dropout_rate,noise_offset, ) def run_cmd_advanced_training(**kwargs): options = [ f' --max_train_epochs="{kwargs.get("max_train_epochs", "")}"' if kwargs.get('max_train_epochs') else '', f' --max_data_loader_n_workers="{kwargs.get("max_data_loader_n_workers", "")}"' if kwargs.get('max_data_loader_n_workers') else '', f' --max_token_length={kwargs.get("max_token_length", "")}' if int(kwargs.get('max_token_length', 75)) > 75 else '', f' --clip_skip={kwargs.get("clip_skip", "")}' if int(kwargs.get('clip_skip', 1)) > 1 else '', f' --resume="{kwargs.get("resume", "")}"' if kwargs.get('resume') else '', f' --keep_tokens="{kwargs.get("keep_tokens", "")}"' if int(kwargs.get('keep_tokens', 0)) > 0 else '', f' --caption_dropout_every_n_epochs="{kwargs.get("caption_dropout_every_n_epochs", "")}"' if int(kwargs.get('caption_dropout_every_n_epochs', 0)) > 0 else '', f' --caption_dropout_rate="{kwargs.get("caption_dropout_rate", "")}"' if float(kwargs.get('caption_dropout_rate', 0)) > 0 else '', f' --bucket_reso_steps={int(kwargs.get("bucket_reso_steps", 1))}' if int(kwargs.get('bucket_reso_steps', 64)) >= 1 else '', ' --save_state' if kwargs.get('save_state') else '', ' --mem_eff_attn' if kwargs.get('mem_eff_attn') else '', ' --color_aug' if kwargs.get('color_aug') else '', ' --flip_aug' if kwargs.get('flip_aug') else '', ' --shuffle_caption' if kwargs.get('shuffle_caption') else '', ' --gradient_checkpointing' if kwargs.get('gradient_checkpointing') else '', ' --full_fp16' if kwargs.get('full_fp16') else '', ' --xformers' if kwargs.get('xformers') else '', ' --use_8bit_adam' if kwargs.get('use_8bit_adam') else '', ' --persistent_data_loader_workers' if kwargs.get('persistent_data_loader_workers') else '', ' --bucket_no_upscale' if kwargs.get('bucket_no_upscale') else '', ' --random_crop' if kwargs.get('random_crop') else '', f' --noise_offset={float(kwargs.get("noise_offset", 0))}' if not kwargs.get('noise_offset', '') == '' else '', ] run_cmd = ''.join(options) return run_cmd # def run_cmd_advanced_training(**kwargs): # arg_map = { # 'max_train_epochs': ' --max_train_epochs="{}"', # 'max_data_loader_n_workers': ' --max_data_loader_n_workers="{}"', # 'max_token_length': ' --max_token_length={}' if int(kwargs.get('max_token_length', 75)) > 75 else '', # 'clip_skip': ' --clip_skip={}' if int(kwargs.get('clip_skip', 1)) > 1 else '', # 'resume': ' --resume="{}"', # 'keep_tokens': ' --keep_tokens="{}"' if int(kwargs.get('keep_tokens', 0)) > 0 else '', # 'caption_dropout_every_n_epochs': ' --caption_dropout_every_n_epochs="{}"' if int(kwargs.get('caption_dropout_every_n_epochs', 0)) > 0 else '', # 'caption_dropout_rate': ' --caption_dropout_rate="{}"' if float(kwargs.get('caption_dropout_rate', 0)) > 0 else '', # 'bucket_reso_steps': ' --bucket_reso_steps={:d}' if int(kwargs.get('bucket_reso_steps', 64)) >= 1 else '', # 'save_state': ' --save_state', # 'mem_eff_attn': ' --mem_eff_attn', # 'color_aug': ' --color_aug', # 'flip_aug': ' --flip_aug', # 'shuffle_caption': ' --shuffle_caption', # 'gradient_checkpointing': ' --gradient_checkpointing', # 'full_fp16': ' --full_fp16', # 'xformers': ' --xformers', # 'use_8bit_adam': ' --use_8bit_adam', # 'persistent_data_loader_workers': ' --persistent_data_loader_workers', # 'bucket_no_upscale': ' --bucket_no_upscale', # 'random_crop': ' --random_crop', # } # options = [arg_map[key].format(value) for key, value in kwargs.items() if key in arg_map and value] # cmd = ''.join(options) # return cmd