# v2: select precision for saved checkpoint # このスクリプトのライセンスは、train_dreambooth.pyと同じくApache License 2.0とします # License: # Copyright 2022 Kohya S. @kohya_ss # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # License of included scripts: # Diffusers: ASL 2.0 https://github.com/huggingface/diffusers/blob/main/LICENSE import argparse import itertools import math import os import random import json import importlib from tqdm import tqdm import torch from accelerate import Accelerator from accelerate.utils import set_seed from transformers import CLIPTextModel, CLIPTokenizer import diffusers from diffusers import DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel import numpy as np from einops import rearrange from torch import einsum import fine_tuning_utils # Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う TOKENIZER_PATH = "openai/clip-vit-large-patch14" # checkpointファイル名 LAST_CHECKPOINT_NAME = "last.ckpt" LAST_STATE_NAME = "last-state" EPOCH_CHECKPOINT_NAME = "epoch-{:06d}.ckpt" EPOCH_STATE_NAME = "epoch-{:06d}-state" def collate_fn(examples): return examples[0] class FineTuningDataset(torch.utils.data.Dataset): def __init__(self, metadata, train_data_dir, batch_size, tokenizer, max_token_length, shuffle_caption, dataset_repeats, debug) -> None: super().__init__() self.metadata = metadata self.train_data_dir = train_data_dir self.batch_size = batch_size self.tokenizer = tokenizer self.max_token_length = max_token_length self.shuffle_caption = shuffle_caption self.debug = debug self.tokenizer_max_length = self.tokenizer.model_max_length if max_token_length is None else max_token_length + 2 print("make buckets") # 最初に数を数える self.bucket_resos = set() for img_md in metadata.values(): if 'train_resolution' in img_md: self.bucket_resos.add(tuple(img_md['train_resolution'])) self.bucket_resos = list(self.bucket_resos) self.bucket_resos.sort() print(f"number of buckets: {len(self.bucket_resos)}") reso_to_index = {} for i, reso in enumerate(self.bucket_resos): reso_to_index[reso] = i # bucketに割り当てていく self.buckets = [[] for _ in range(len(self.bucket_resos))] n = 1 if dataset_repeats is None else dataset_repeats images_count = 0 for image_key, img_md in metadata.items(): if 'train_resolution' not in img_md: continue if not os.path.exists(os.path.join(self.train_data_dir, image_key + '.npz')): continue reso = tuple(img_md['train_resolution']) for _ in range(n): self.buckets[reso_to_index[reso]].append(image_key) images_count += n # 参照用indexを作る self.buckets_indices = [] for bucket_index, bucket in enumerate(self.buckets): batch_count = int(math.ceil(len(bucket) / self.batch_size)) for batch_index in range(batch_count): self.buckets_indices.append((bucket_index, batch_index)) self.shuffle_buckets() self._length = len(self.buckets_indices) self.images_count = images_count def show_buckets(self): for i, (reso, bucket) in enumerate(zip(self.bucket_resos, self.buckets)): print(f"bucket {i}: resolution {reso}, count: {len(bucket)}") def shuffle_buckets(self): random.shuffle(self.buckets_indices) for bucket in self.buckets: random.shuffle(bucket) def load_latent(self, image_key): return np.load(os.path.join(self.train_data_dir, image_key + '.npz'))['arr_0'] def __len__(self): return self._length def __getitem__(self, index): if index == 0: self.shuffle_buckets() bucket = self.buckets[self.buckets_indices[index][0]] image_index = self.buckets_indices[index][1] * self.batch_size input_ids_list = [] latents_list = [] captions = [] for image_key in bucket[image_index:image_index + self.batch_size]: img_md = self.metadata[image_key] caption = img_md.get('caption') tags = img_md.get('tags') if caption is None: caption = tags elif tags is not None and len(tags) > 0: caption = caption + ', ' + tags assert caption is not None and len(caption) > 0, f"caption or tag is required / キャプションまたはタグは必須です:{image_key}" latents = self.load_latent(image_key) if self.shuffle_caption: tokens = caption.strip().split(",") random.shuffle(tokens) caption = ",".join(tokens).strip() captions.append(caption) input_ids = self.tokenizer(caption, padding="max_length", truncation=True, max_length=self.tokenizer_max_length, return_tensors="pt").input_ids # 77以上の時は " .... " でトータル227とかになっているので、"..."の三連に変換する # 1111氏のやつは , で区切る、とかしているようだが とりあえず単純に if self.tokenizer_max_length > self.tokenizer.model_max_length: input_ids = input_ids.squeeze(0) iids_list = [] for i in range(1, self.tokenizer_max_length - self.tokenizer.model_max_length + 2, self.tokenizer.model_max_length - 2): iid = (input_ids[0].unsqueeze(0), input_ids[i:i + self.tokenizer.model_max_length - 2], input_ids[-1].unsqueeze(0)) iid = torch.cat(iid) iids_list.append(iid) input_ids = torch.stack(iids_list) # 3,77 input_ids_list.append(input_ids) latents_list.append(torch.FloatTensor(latents)) example = {} example['input_ids'] = torch.stack(input_ids_list) example['latents'] = torch.stack(latents_list) if self.debug: example['image_keys'] = bucket[image_index:image_index + self.batch_size] example['captions'] = captions return example def save_hypernetwork(output_file, hypernetwork): state_dict = hypernetwork.get_state_dict() torch.save(state_dict, output_file) def train(args): fine_tuning = args.hypernetwork_module is None # fine tuning or hypernetwork training # モデル形式のオプション設定を確認する use_stable_diffusion_format = os.path.isfile(args.pretrained_model_name_or_path) if not use_stable_diffusion_format: assert os.path.exists( args.pretrained_model_name_or_path), f"no pretrained model / 学習元モデルがありません : {args.pretrained_model_name_or_path}" assert not fine_tuning or ( args.save_every_n_epochs is None or use_stable_diffusion_format), "when loading Diffusers model, save_every_n_epochs does not work / Diffusersのモデルを読み込むときにはsave_every_n_epochsオプションは無効になります" if args.seed is not None: set_seed(args.seed) # メタデータを読み込む if os.path.exists(args.in_json): print(f"loading existing metadata: {args.in_json}") with open(args.in_json, "rt", encoding='utf-8') as f: metadata = json.load(f) else: print(f"no metadata / メタデータファイルがありません: {args.in_json}") return # tokenizerを読み込む print("prepare tokenizer") tokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH) if args.max_token_length is not None: print(f"update token length in tokenizer: {args.max_token_length}") # datasetを用意する print("prepare dataset") train_dataset = FineTuningDataset(metadata, args.train_data_dir, args.train_batch_size, tokenizer, args.max_token_length, args.shuffle_caption, args.dataset_repeats, args.debug_dataset) if args.debug_dataset: print(f"Total dataset length / データセットの長さ: {len(train_dataset)}") print(f"Total images / 画像数: {train_dataset.images_count}") train_dataset.show_buckets() i = 0 for example in train_dataset: print(f"image: {example['image_keys']}") print(f"captions: {example['captions']}") print(f"latents: {example['latents'].shape}") print(f"input_ids: {example['input_ids'].shape}") print(example['input_ids']) i += 1 if i >= 8: break return # acceleratorを準備する print("prepare accelerator") accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision) # モデルを読み込む if use_stable_diffusion_format: print("load StableDiffusion checkpoint") text_encoder, _, unet = fine_tuning_utils.load_models_from_stable_diffusion_checkpoint(args.pretrained_model_name_or_path) else: print("load Diffusers pretrained models") text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") # モデルに xformers とか memory efficient attention を組み込む replace_unet_modules(unet, args.mem_eff_attn, args.xformers) if not fine_tuning: # Hypernetwork print("import hypernetwork module:", args.hypernetwork_module) hyp_module = importlib.import_module(args.hypernetwork_module) hypernetwork = hyp_module.Hypernetwork() if args.hypernetwork_weights is not None: print("load hypernetwork weights from:", args.hypernetwork_weights) hyp_sd = torch.load(args.hypernetwork_weights, map_location='cpu') success = hypernetwork.load_from_state_dict(hyp_sd) assert success, "hypernetwork weights loading failed." print("apply hypernetwork") hypernetwork.apply_to_diffusers(None, text_encoder, unet) # mixed precisionに対応した型を用意しておき適宜castする weight_dtype = torch.float32 if args.mixed_precision == "fp16": weight_dtype = torch.float16 elif args.mixed_precision == "bf16": weight_dtype = torch.bfloat16 save_dtype = None if args.save_precision == "fp16": save_dtype = torch.float16 elif args.save_precision == "bf16": save_dtype = torch.bfloat16 elif args.save_precision == "float": save_dtype = torch.float32 # 学習を準備する:モデルを適切な状態にする training_models = [] if fine_tuning: if args.gradient_checkpointing: unet.enable_gradient_checkpointing() training_models.append(unet) if args.train_text_encoder: print("enable text encoder training") if args.gradient_checkpointing: text_encoder.gradient_checkpointing_enable() training_models.append(text_encoder) else: text_encoder.to(accelerator.device, dtype=weight_dtype) text_encoder.requires_grad_(False) # text encoderは学習しない text_encoder.eval() else: unet.to(accelerator.device, dtype=weight_dtype) unet.requires_grad_(False) unet.eval() text_encoder.to(accelerator.device, dtype=weight_dtype) text_encoder.requires_grad_(False) text_encoder.eval() training_models.append(hypernetwork) for m in training_models: m.requires_grad_(True) params_to_optimize = itertools.chain(*[m.parameters() for m in training_models]) # 学習に必要なクラスを準備する print("prepare optimizer, data loader etc.") # 8-bit Adamを使う if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです") print("use 8-bit Adam optimizer") optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW # betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略 optimizer = optimizer_class(params_to_optimize, lr=args.learning_rate) # dataloaderを準備する # DataLoaderのプロセス数:0はメインプロセスになる n_workers = min(8, os.cpu_count() - 1) # cpu_count-1 ただし最大8 train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=1, shuffle=True, collate_fn=collate_fn, num_workers=n_workers) # lr schedulerを用意する lr_scheduler = diffusers.optimization.get_scheduler( args.lr_scheduler, optimizer, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, num_warmup_steps=args.lr_warmup_steps) # acceleratorがなんかよろしくやってくれるらしい if fine_tuning: if args.train_text_encoder: unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, text_encoder, optimizer, train_dataloader, lr_scheduler) else: unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler) else: unet, hypernetwork, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, hypernetwork, optimizer, train_dataloader, lr_scheduler) # resumeする if args.resume is not None: print(f"resume training from state: {args.resume}") accelerator.load_state(args.resume) # epoch数を計算する num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # 学習する total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps print("running training / 学習開始") print(f" num examples / サンプル数: {train_dataset.images_count}") print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") print(f" num epochs / epoch数: {num_train_epochs}") print(f" batch size per device / バッチサイズ: {args.train_batch_size}") print(f" total train batch size (with parallel & distributed) / 総バッチサイズ(並列学習含む): {total_batch_size}") print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process, desc="steps") global_step = 0 noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) if accelerator.is_main_process: accelerator.init_trackers("finetuning" if fine_tuning else "hypernetwork") # 以下 train_dreambooth.py からほぼコピペ for epoch in range(num_train_epochs): print(f"epoch {epoch+1}/{num_train_epochs}") for m in training_models: m.train() loss_total = 0 for step, batch in enumerate(train_dataloader): with accelerator.accumulate(training_models[0]): latents = batch["latents"].to(accelerator.device) latents = latents * 0.18215 b_size = latents.shape[0] # with torch.no_grad(): with torch.set_grad_enabled(args.train_text_encoder): # Get the text embedding for conditioning input_ids = batch["input_ids"].to(accelerator.device) input_ids = input_ids.reshape((-1, tokenizer.model_max_length)) # batch_size*3, 77 if args.clip_skip is None: encoder_hidden_states = text_encoder(input_ids)[0] else: enc_out = text_encoder(input_ids, output_hidden_states=True, return_dict=True) encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip] encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states) encoder_hidden_states = encoder_hidden_states.reshape((b_size, -1, encoder_hidden_states.shape[-1])) if args.max_token_length is not None: # ... の三連を ... へ戻す sts_list = [encoder_hidden_states[:, 0].unsqueeze(1)] for i in range(1, args.max_token_length, tokenizer.model_max_length): sts_list.append(encoder_hidden_states[:, i:i + tokenizer.model_max_length - 2]) sts_list.append(encoder_hidden_states[:, -1].unsqueeze(1)) encoder_hidden_states = torch.cat(sts_list, dim=1) # Sample noise that we'll add to the latents noise = torch.randn_like(latents, device=latents.device) # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Predict the noise residual noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample loss = torch.nn.functional.mse_loss(noise_pred.float(), noise.float(), reduction="mean") accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = itertools.chain(*[m.parameters() for m in training_models]) accelerator.clip_grad_norm_(params_to_clip, 1.0) # args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad(set_to_none=True) # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 current_loss = loss.detach().item() * b_size loss_total += current_loss avr_loss = loss_total / (step+1) logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) # accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break accelerator.wait_for_everyone() if args.save_every_n_epochs is not None: if (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs: print("saving check point.") os.makedirs(args.output_dir, exist_ok=True) ckpt_file = os.path.join(args.output_dir, EPOCH_CHECKPOINT_NAME.format(epoch + 1)) if fine_tuning: fine_tuning_utils.save_stable_diffusion_checkpoint( ckpt_file, accelerator.unwrap_model(text_encoder), accelerator.unwrap_model(unet), args.pretrained_model_name_or_path, epoch + 1, global_step, save_dtype) else: save_hypernetwork(ckpt_file, accelerator.unwrap_model(hypernetwork)) if args.save_state: print("saving state.") accelerator.save_state(os.path.join(args.output_dir, EPOCH_STATE_NAME.format(epoch + 1))) is_main_process = accelerator.is_main_process if is_main_process: if fine_tuning: unet = accelerator.unwrap_model(unet) text_encoder = accelerator.unwrap_model(text_encoder) else: hypernetwork = accelerator.unwrap_model(hypernetwork) accelerator.end_training() if args.save_state: print("saving last state.") accelerator.save_state(os.path.join(args.output_dir, LAST_STATE_NAME)) del accelerator # この後メモリを使うのでこれは消す if is_main_process: os.makedirs(args.output_dir, exist_ok=True) if fine_tuning: if use_stable_diffusion_format: ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME) print(f"save trained model as StableDiffusion checkpoint to {ckpt_file}") fine_tuning_utils.save_stable_diffusion_checkpoint( ckpt_file, text_encoder, unet, args.pretrained_model_name_or_path, epoch, global_step, save_dtype) else: # Create the pipeline using using the trained modules and save it. print(f"save trained model as Diffusers to {args.output_dir}") pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=unet, text_encoder=text_encoder, ) pipeline.save_pretrained(args.output_dir) else: ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME) print(f"save trained model to {ckpt_file}") save_hypernetwork(ckpt_file, hypernetwork) print("model saved.") # region モジュール入れ替え部 """ 高速化のためのモジュール入れ替え """ # FlashAttentionを使うCrossAttention # based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py # LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE # constants EPSILON = 1e-6 # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d # flash attention forwards and backwards # https://arxiv.org/abs/2205.14135 class FlashAttentionFunction(torch.autograd.function.Function): @ staticmethod @ torch.no_grad() def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size): """ Algorithm 2 in the paper """ device = q.device dtype = q.dtype max_neg_value = -torch.finfo(q.dtype).max qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) o = torch.zeros_like(q) all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device) all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device) scale = (q.shape[-1] ** -0.5) if not exists(mask): mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size) else: mask = rearrange(mask, 'b n -> b 1 1 n') mask = mask.split(q_bucket_size, dim=-1) row_splits = zip( q.split(q_bucket_size, dim=-2), o.split(q_bucket_size, dim=-2), mask, all_row_sums.split(q_bucket_size, dim=-2), all_row_maxes.split(q_bucket_size, dim=-2), ) for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits): q_start_index = ind * q_bucket_size - qk_len_diff col_splits = zip( k.split(k_bucket_size, dim=-2), v.split(k_bucket_size, dim=-2), ) for k_ind, (kc, vc) in enumerate(col_splits): k_start_index = k_ind * k_bucket_size attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale if exists(row_mask): attn_weights.masked_fill_(~row_mask, max_neg_value) if causal and q_start_index < (k_start_index + k_bucket_size - 1): causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(q_start_index - k_start_index + 1) attn_weights.masked_fill_(causal_mask, max_neg_value) block_row_maxes = attn_weights.amax(dim=-1, keepdims=True) attn_weights -= block_row_maxes exp_weights = torch.exp(attn_weights) if exists(row_mask): exp_weights.masked_fill_(~row_mask, 0.) block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON) new_row_maxes = torch.maximum(block_row_maxes, row_maxes) exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc) exp_row_max_diff = torch.exp(row_maxes - new_row_maxes) exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes) new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values) row_maxes.copy_(new_row_maxes) row_sums.copy_(new_row_sums) ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size) ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes) return o @ staticmethod @ torch.no_grad() def backward(ctx, do): """ Algorithm 4 in the paper """ causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args q, k, v, o, l, m = ctx.saved_tensors device = q.device max_neg_value = -torch.finfo(q.dtype).max qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) dq = torch.zeros_like(q) dk = torch.zeros_like(k) dv = torch.zeros_like(v) row_splits = zip( q.split(q_bucket_size, dim=-2), o.split(q_bucket_size, dim=-2), do.split(q_bucket_size, dim=-2), mask, l.split(q_bucket_size, dim=-2), m.split(q_bucket_size, dim=-2), dq.split(q_bucket_size, dim=-2) ) for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits): q_start_index = ind * q_bucket_size - qk_len_diff col_splits = zip( k.split(k_bucket_size, dim=-2), v.split(k_bucket_size, dim=-2), dk.split(k_bucket_size, dim=-2), dv.split(k_bucket_size, dim=-2), ) for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits): k_start_index = k_ind * k_bucket_size attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale if causal and q_start_index < (k_start_index + k_bucket_size - 1): causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(q_start_index - k_start_index + 1) attn_weights.masked_fill_(causal_mask, max_neg_value) exp_attn_weights = torch.exp(attn_weights - mc) if exists(row_mask): exp_attn_weights.masked_fill_(~row_mask, 0.) p = exp_attn_weights / lc dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc) dp = einsum('... i d, ... j d -> ... i j', doc, vc) D = (doc * oc).sum(dim=-1, keepdims=True) ds = p * scale * (dp - D) dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc) dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc) dqc.add_(dq_chunk) dkc.add_(dk_chunk) dvc.add_(dv_chunk) return dq, dk, dv, None, None, None, None def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers): if mem_eff_attn: replace_unet_cross_attn_to_memory_efficient() elif xformers: replace_unet_cross_attn_to_xformers() def replace_unet_cross_attn_to_memory_efficient(): print("Replace CrossAttention.forward to use FlashAttention") flash_func = FlashAttentionFunction def forward_flash_attn(self, x, context=None, mask=None): q_bucket_size = 512 k_bucket_size = 1024 h = self.heads q = self.to_q(x) context = context if context is not None else x context = context.to(x.dtype) if hasattr(self, 'hypernetwork') and self.hypernetwork is not None: context_k, context_v = self.hypernetwork.forward(x, context) context_k = context_k.to(x.dtype) context_v = context_v.to(x.dtype) else: context_k = context context_v = context k = self.to_k(context_k) v = self.to_v(context_v) del context, x q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size) out = rearrange(out, 'b h n d -> b n (h d)') # diffusers 0.6.0 if type(self.to_out) is torch.nn.Sequential: return self.to_out(out) # diffusers 0.7.0~ わざわざ変えるなよ (;´Д`) out = self.to_out[0](out) out = self.to_out[1](out) return out diffusers.models.attention.CrossAttention.forward = forward_flash_attn def replace_unet_cross_attn_to_xformers(): print("Replace CrossAttention.forward to use xformers") try: import xformers.ops except ImportError: raise ImportError("No xformers / xformersがインストールされていないようです") def forward_xformers(self, x, context=None, mask=None): h = self.heads q_in = self.to_q(x) context = default(context, x) context = context.to(x.dtype) if hasattr(self, 'hypernetwork') and self.hypernetwork is not None: context_k, context_v = self.hypernetwork.forward(x, context) context_k = context_k.to(x.dtype) context_v = context_v.to(x.dtype) else: context_k = context context_v = context k_in = self.to_k(context_k) v_in = self.to_v(context_v) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) del q_in, k_in, v_in q = q.contiguous() k = k.contiguous() v = v.contiguous() out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる out = rearrange(out, 'b n h d -> b n (h d)', h=h) # diffusers 0.6.0 if type(self.to_out) is torch.nn.Sequential: return self.to_out(out) # diffusers 0.7.0~ out = self.to_out[0](out) out = self.to_out[1](out) return out diffusers.models.attention.CrossAttention.forward = forward_xformers # endregion if __name__ == '__main__': # torch.cuda.set_per_process_memory_fraction(0.48) parser = argparse.ArgumentParser() parser.add_argument("--pretrained_model_name_or_path", type=str, default=None, help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル") parser.add_argument("--in_json", type=str, default=None, help="metadata file to input / 読みこむメタデータファイル") parser.add_argument("--shuffle_caption", action="store_true", help="shuffle comma-separated caption when fine tuning / fine tuning時にコンマで区切られたcaptionの各要素をshuffleする") parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ") parser.add_argument("--dataset_repeats", type=int, default=None, help="num times to repeat dataset / 学習にデータセットを繰り返す回数") parser.add_argument("--output_dir", type=str, default=None, help="directory to output trained model, save as same format as input / 学習後のモデル出力先ディレクトリ(入力と同じ形式で保存)") parser.add_argument("--train_text_encoder", action="store_true", help="train text encoder / text encoderも学習する") parser.add_argument("--hypernetwork_module", type=str, default=None, help='train hypernetwork instead of fine tuning, module to use / fine tuningの代わりにHypernetworkの学習をする場合、そのモジュール') parser.add_argument("--hypernetwork_weights", type=str, default=None, help='hypernetwork weights to initialize for additional training / Hypernetworkの学習時に読み込む重み(Hypernetworkの追加学習)') parser.add_argument("--save_every_n_epochs", type=int, default=None, help="save checkpoint every N epochs (only supports in StableDiffusion checkpoint) / 学習中のモデルを指定エポックごとに保存する(StableDiffusion形式のモデルを読み込んだ場合のみ有効)") parser.add_argument("--save_state", action="store_true", help="save training state additionally (including optimizer states etc.) / optimizerなど学習状態も含めたstateを追加で保存する") parser.add_argument("--resume", type=str, default=None, help="saved state to resume training / 学習再開するモデルのstate") parser.add_argument("--max_token_length", type=int, default=None, choices=[None, 150, 225], help="max token length of text encoder (default for 75, 150 or 225) / text encoderのトークンの最大長(未指定で75、150または225が指定可)") parser.add_argument("--train_batch_size", type=int, default=1, help="batch size for training / 学習時のバッチサイズ") parser.add_argument("--use_8bit_adam", action="store_true", help="use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使う(bitsandbytesのインストールが必要)") parser.add_argument("--mem_eff_attn", action="store_true", help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う") parser.add_argument("--xformers", action="store_true", help="use xformers for CrossAttention / CrossAttentionにxformersを使う") parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率") parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数") parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed") parser.add_argument("--gradient_checkpointing", action="store_true", help="enable gradient checkpointing / grandient checkpointingを有効にする") parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass / 学習時に逆伝播をする前に勾配を合計するステップ数") parser.add_argument("--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度") parser.add_argument("--save_precision", type=str, default=None, choices=[None, "float", "fp16", "bf16"], help="precision in saving / 保存時に精度を変更して保存する") parser.add_argument("--clip_skip", type=int, default=None, help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いる(nは1以上)") parser.add_argument("--debug_dataset", action="store_true", help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)") parser.add_argument("--lr_scheduler", type=str, default="constant", help="scheduler to use for learning rate: linear, cosine, cosine_with_restarts, polynomial, constant, constant_with_warmup") parser.add_argument("--lr_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler.") args = parser.parse_args() train(args)