import os import subprocess import gradio as gr from .common_gui_functions import get_file_path, get_saveasfile_path PYTHON = 'python3' if os.name == 'posix' else './venv/Scripts/python.exe' folder_symbol = '\U0001f4c2' # 📂 refresh_symbol = '\U0001f504' # 🔄 save_style_symbol = '\U0001f4be' # 💾 document_symbol = '\U0001F4C4' # 📄 def resize_lora( model, new_rank, save_to, save_precision, device, dynamic_method, dynamic_param, verbose, ): # Check for caption_text_input if model == '': show_message_box('Invalid model file') return # Check if source model exist if not os.path.isfile(model): show_message_box('The provided model is not a file') return if dynamic_method == 'sv_ratio': if float(dynamic_param) < 2: show_message_box( f'Dynamic parameter for {dynamic_method} need to be 2 or greater...' ) return if dynamic_method == 'sv_fro' or dynamic_method == 'sv_cumulative': if float(dynamic_param) < 0 or float(dynamic_param) > 1: show_message_box( f'Dynamic parameter for {dynamic_method} need to be between 0 and 1...' ) return # Check if save_to end with one of the defines extension. If not add .safetensors. if not save_to.endswith(('.pt', '.safetensors')): save_to += '.safetensors' if device == '': device = 'cuda' run_cmd = f'{PYTHON} "{os.path.join("networks","resize_lora.py")}"' run_cmd += f' --save_precision {save_precision}' run_cmd += f' --save_to {save_to}' run_cmd += f' --model {model}' run_cmd += f' --new_rank {new_rank}' run_cmd += f' --device {device}' if not dynamic_method == 'None': run_cmd += f' --dynamic_method {dynamic_method}' run_cmd += f' --dynamic_param {dynamic_param}' if verbose: run_cmd += f' --verbose' print(run_cmd) # Run the command if os.name == 'posix': os.system(run_cmd) else: subprocess.run(run_cmd) ### # Gradio UI ### def gradio_resize_lora_tab(): with gr.Tab('Resize LoRA'): gr.Markdown('This utility can resize a LoRA.') lora_ext = gr.Textbox(value='*.safetensors *.pt', visible=False) lora_ext_name = gr.Textbox(value='LoRA model types', visible=False) with gr.Row(): model = gr.Textbox( label='Source LoRA', placeholder='Path to the LoRA to resize', interactive=True, ) button_lora_a_model_file = gr.Button( folder_symbol, elem_id='open_folder_small' ) button_lora_a_model_file.click( lambda *args, **kwargs: get_file_path(*args), inputs=[model, lora_ext, lora_ext_name], outputs=model, show_progress=False, ) with gr.Row(): new_rank = gr.Slider( label='Desired LoRA rank', minimum=1, maximum=1024, step=1, value=4, interactive=True, ) with gr.Row(): dynamic_method = gr.Dropdown( choices=['None', 'sv_ratio', 'sv_fro', 'sv_cumulative'], value='sv_fro', label='Dynamic method', interactive=True, ) dynamic_param = gr.Textbox( label='Dynamic parameter', value='0.9', interactive=True, placeholder='Value for the dynamic method selected.', ) verbose = gr.Checkbox(label='Verbose', value=False) with gr.Row(): save_to = gr.Textbox( label='Save to', placeholder='path for the LoRA file to save...', interactive=True, ) button_save_to = gr.Button( folder_symbol, elem_id='open_folder_small' ) button_save_to.click( get_saveasfile_path, inputs=[save_to, lora_ext, lora_ext_name], outputs=save_to, show_progress=False, ) save_precision = gr.Dropdown( label='Save precision', choices=['fp16', 'bf16', 'float'], value='fp16', interactive=True, ) device = gr.Dropdown( label='Device', choices=[ 'cpu', 'cuda', ], value='cuda', interactive=True, ) convert_button = gr.Button('Resize model') convert_button.click( resize_lora, inputs=[ model, new_rank, save_to, save_precision, device, dynamic_method, dynamic_param, verbose, ], show_progress=False, )