KohyaSS/library/common_gui.py
2023-04-01 16:09:40 -04:00

979 lines
33 KiB
Python

from tkinter import filedialog, Tk
from easygui import msgbox
import os
import gradio as gr
import easygui
import shutil
folder_symbol = '\U0001f4c2' # 📂
refresh_symbol = '\U0001f504' # 🔄
save_style_symbol = '\U0001f4be' # 💾
document_symbol = '\U0001F4C4' # 📄
# define a list of substrings to search for v2 base models
V2_BASE_MODELS = [
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
]
# define a list of substrings to search for v_parameterization models
V_PARAMETERIZATION_MODELS = [
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
]
# define a list of substrings to v1.x models
V1_MODELS = [
'CompVis/stable-diffusion-v1-4',
'runwayml/stable-diffusion-v1-5',
]
# define a list of substrings to search for
ALL_PRESET_MODELS = V2_BASE_MODELS + V_PARAMETERIZATION_MODELS + V1_MODELS
FILE_ENV_EXCLUSION = ['COLAB_GPU', 'RUNPOD_POD_ID']
def check_if_model_exist(output_name, output_dir, save_model_as):
if save_model_as in ['diffusers', 'diffusers_safetendors']:
ckpt_folder = os.path.join(output_dir, output_name)
if os.path.isdir(ckpt_folder):
msg = f'A diffuser model with the same name {ckpt_folder} already exists. Do you want to overwrite it?'
if not easygui.ynbox(msg, 'Overwrite Existing Model?'):
print(
'Aborting training due to existing model with same name...'
)
return True
elif save_model_as in ['ckpt', 'safetensors']:
ckpt_file = os.path.join(output_dir, output_name + '.' + save_model_as)
if os.path.isfile(ckpt_file):
msg = f'A model with the same file name {ckpt_file} already exists. Do you want to overwrite it?'
if not easygui.ynbox(msg, 'Overwrite Existing Model?'):
print(
'Aborting training due to existing model with same name...'
)
return True
else:
print(
'Can\'t verify if existing model exist when save model is set a "same as source model", continuing to train model...'
)
return False
return False
def update_my_data(my_data):
# Update the optimizer based on the use_8bit_adam flag
use_8bit_adam = my_data.get('use_8bit_adam', False)
my_data.setdefault('optimizer', 'AdamW8bit' if use_8bit_adam else 'AdamW')
# Update model_list to custom if empty or pretrained_model_name_or_path is not a preset model
model_list = my_data.get('model_list', [])
pretrained_model_name_or_path = my_data.get('pretrained_model_name_or_path', '')
if not model_list or pretrained_model_name_or_path not in ALL_PRESET_MODELS:
my_data['model_list'] = 'custom'
# Convert epoch and save_every_n_epochs values to int if they are strings
for key in ['epoch', 'save_every_n_epochs']:
value = my_data.get(key, -1)
if isinstance(value, str) and value.isdigit():
my_data[key] = int(value)
elif not value:
my_data[key] = -1
# Update LoRA_type if it is set to LoCon
if my_data.get('LoRA_type', 'Standard') == 'LoCon':
my_data['LoRA_type'] = 'LyCORIS/LoCon'
# Update model save choices due to changes for LoRA and TI training
if (
(my_data.get('LoRA_type') or my_data.get('num_vectors_per_token'))
and my_data.get('save_model_as') not in ['safetensors', 'ckpt']
):
message = (
'Updating save_model_as to safetensors because the current value in the config file is no longer applicable to {}'
)
if my_data.get('LoRA_type'):
print(message.format('LoRA'))
if my_data.get('num_vectors_per_token'):
print(message.format('TI'))
my_data['save_model_as'] = 'safetensors'
return my_data
def get_dir_and_file(file_path):
dir_path, file_name = os.path.split(file_path)
return (dir_path, file_name)
# def has_ext_files(directory, extension):
# # Iterate through all the files in the directory
# for file in os.listdir(directory):
# # If the file name ends with extension, return True
# if file.endswith(extension):
# return True
# # If no extension files were found, return False
# return False
def get_file_path(
file_path='', default_extension='.json', extension_name='Config files'
):
if not any(var in os.environ for var in FILE_ENV_EXCLUSION):
current_file_path = file_path
# print(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
# Create a hidden Tkinter root window
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
# Show the open file dialog and get the selected file path
file_path = filedialog.askopenfilename(
filetypes=(
(extension_name, f'*{default_extension}'),
('All files', '*.*'),
),
defaultextension=default_extension,
initialfile=initial_file,
initialdir=initial_dir,
)
# Destroy the hidden root window
root.destroy()
# If no file is selected, use the current file path
if not file_path:
file_path = current_file_path
current_file_path = file_path
# print(f'current file path: {current_file_path}')
return file_path
def get_any_file_path(file_path=''):
if not any(var in os.environ for var in FILE_ENV_EXCLUSION):
current_file_path = file_path
# print(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
file_path = filedialog.askopenfilename(
initialdir=initial_dir,
initialfile=initial_file,
)
root.destroy()
if file_path == '':
file_path = current_file_path
return file_path
def remove_doublequote(file_path):
if file_path != None:
file_path = file_path.replace('"', '')
return file_path
# def set_legacy_8bitadam(optimizer, use_8bit_adam):
# if optimizer == 'AdamW8bit':
# # use_8bit_adam = True
# return gr.Dropdown.update(value=optimizer), gr.Checkbox.update(
# value=True, interactive=False, visible=True
# )
# else:
# # use_8bit_adam = False
# return gr.Dropdown.update(value=optimizer), gr.Checkbox.update(
# value=False, interactive=False, visible=True
# )
def get_folder_path(folder_path=''):
if not any(var in os.environ for var in FILE_ENV_EXCLUSION):
current_folder_path = folder_path
initial_dir, initial_file = get_dir_and_file(folder_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
folder_path = filedialog.askdirectory(initialdir=initial_dir)
root.destroy()
if folder_path == '':
folder_path = current_folder_path
return folder_path
def get_saveasfile_path(
file_path='', defaultextension='.json', extension_name='Config files'
):
if not any(var in os.environ for var in FILE_ENV_EXCLUSION):
current_file_path = file_path
# print(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
save_file_path = filedialog.asksaveasfile(
filetypes=(
(f'{extension_name}', f'{defaultextension}'),
('All files', '*'),
),
defaultextension=defaultextension,
initialdir=initial_dir,
initialfile=initial_file,
)
root.destroy()
# print(save_file_path)
if save_file_path == None:
file_path = current_file_path
else:
print(save_file_path.name)
file_path = save_file_path.name
# print(file_path)
return file_path
def get_saveasfilename_path(
file_path='', extensions='*', extension_name='Config files'
):
if not any(var in os.environ for var in FILE_ENV_EXCLUSION):
current_file_path = file_path
# print(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
save_file_path = filedialog.asksaveasfilename(
filetypes=((f'{extension_name}', f'{extensions}'), ('All files', '*')),
defaultextension=extensions,
initialdir=initial_dir,
initialfile=initial_file,
)
root.destroy()
if save_file_path == '':
file_path = current_file_path
else:
# print(save_file_path)
file_path = save_file_path
return file_path
def add_pre_postfix(
folder: str = '',
prefix: str = '',
postfix: str = '',
caption_file_ext: str = '.caption',
) -> None:
"""
Add prefix and/or postfix to the content of caption files within a folder.
If no caption files are found, create one with the requested prefix and/or postfix.
Args:
folder (str): Path to the folder containing caption files.
prefix (str, optional): Prefix to add to the content of the caption files.
postfix (str, optional): Postfix to add to the content of the caption files.
caption_file_ext (str, optional): Extension of the caption files.
"""
if prefix == '' and postfix == '':
return
image_extensions = ('.jpg', '.jpeg', '.png', '.webp')
image_files = [
f for f in os.listdir(folder) if f.lower().endswith(image_extensions)
]
for image_file in image_files:
caption_file_name = os.path.splitext(image_file)[0] + caption_file_ext
caption_file_path = os.path.join(folder, caption_file_name)
if not os.path.exists(caption_file_path):
with open(caption_file_path, 'w') as f:
separator = ' ' if prefix and postfix else ''
f.write(f'{prefix}{separator}{postfix}')
else:
with open(caption_file_path, 'r+') as f:
content = f.read()
content = content.rstrip()
f.seek(0, 0)
prefix_separator = ' ' if prefix else ''
postfix_separator = ' ' if postfix else ''
f.write(
f'{prefix}{prefix_separator}{content}{postfix_separator}{postfix}'
)
def has_ext_files(folder_path: str, file_extension: str) -> bool:
"""
Check if there are any files with the specified extension in the given folder.
Args:
folder_path (str): Path to the folder containing files.
file_extension (str): Extension of the files to look for.
Returns:
bool: True if files with the specified extension are found, False otherwise.
"""
for file in os.listdir(folder_path):
if file.endswith(file_extension):
return True
return False
def find_replace(
folder_path: str = '',
caption_file_ext: str = '.caption',
search_text: str = '',
replace_text: str = '',
) -> None:
"""
Find and replace text in caption files within a folder.
Args:
folder_path (str, optional): Path to the folder containing caption files.
caption_file_ext (str, optional): Extension of the caption files.
search_text (str, optional): Text to search for in the caption files.
replace_text (str, optional): Text to replace the search text with.
"""
print('Running caption find/replace')
if not has_ext_files(folder_path, caption_file_ext):
msgbox(
f'No files with extension {caption_file_ext} were found in {folder_path}...'
)
return
if search_text == '':
return
caption_files = [
f for f in os.listdir(folder_path) if f.endswith(caption_file_ext)
]
for caption_file in caption_files:
with open(
os.path.join(folder_path, caption_file), 'r', errors='ignore'
) as f:
content = f.read()
content = content.replace(search_text, replace_text)
with open(os.path.join(folder_path, caption_file), 'w') as f:
f.write(content)
def color_aug_changed(color_aug):
if color_aug:
msgbox(
'Disabling "Cache latent" because "Color augmentation" has been selected...'
)
return gr.Checkbox.update(value=False, interactive=False)
else:
return gr.Checkbox.update(value=True, interactive=True)
def save_inference_file(output_dir, v2, v_parameterization, output_name):
# List all files in the directory
files = os.listdir(output_dir)
# Iterate over the list of files
for file in files:
# Check if the file starts with the value of output_name
if file.startswith(output_name):
# Check if it is a file or a directory
if os.path.isfile(os.path.join(output_dir, file)):
# Split the file name and extension
file_name, ext = os.path.splitext(file)
# Copy the v2-inference-v.yaml file to the current file, with a .yaml extension
if v2 and v_parameterization:
print(
f'Saving v2-inference-v.yaml as {output_dir}/{file_name}.yaml'
)
shutil.copy(
f'./v2_inference/v2-inference-v.yaml',
f'{output_dir}/{file_name}.yaml',
)
elif v2:
print(
f'Saving v2-inference.yaml as {output_dir}/{file_name}.yaml'
)
shutil.copy(
f'./v2_inference/v2-inference.yaml',
f'{output_dir}/{file_name}.yaml',
)
def set_pretrained_model_name_or_path_input(
model_list, pretrained_model_name_or_path, v2, v_parameterization
):
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
if str(model_list) in V2_BASE_MODELS:
print('SD v2 model detected. Setting --v2 parameter')
v2 = True
v_parameterization = False
pretrained_model_name_or_path = str(model_list)
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
if str(model_list) in V_PARAMETERIZATION_MODELS:
print(
'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization'
)
v2 = True
v_parameterization = True
pretrained_model_name_or_path = str(model_list)
if str(model_list) in V1_MODELS:
v2 = False
v_parameterization = False
pretrained_model_name_or_path = str(model_list)
if model_list == 'custom':
if (
str(pretrained_model_name_or_path) in V1_MODELS
or str(pretrained_model_name_or_path) in V2_BASE_MODELS
or str(pretrained_model_name_or_path) in V_PARAMETERIZATION_MODELS
):
pretrained_model_name_or_path = ''
v2 = False
v_parameterization = False
return model_list, pretrained_model_name_or_path, v2, v_parameterization
def set_v2_checkbox(model_list, v2, v_parameterization):
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
if str(model_list) in V2_BASE_MODELS:
v2 = True
v_parameterization = False
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
if str(model_list) in V_PARAMETERIZATION_MODELS:
v2 = True
v_parameterization = True
if str(model_list) in V1_MODELS:
v2 = False
v_parameterization = False
return v2, v_parameterization
def set_model_list(
model_list,
pretrained_model_name_or_path,
v2,
v_parameterization,
):
if not pretrained_model_name_or_path in ALL_PRESET_MODELS:
model_list = 'custom'
else:
model_list = pretrained_model_name_or_path
return model_list, v2, v_parameterization
###
### Gradio common GUI section
###
def gradio_config():
with gr.Accordion('Configuration file', open=False):
with gr.Row():
button_open_config = gr.Button('Open 📂', elem_id='open_folder')
button_save_config = gr.Button('Save 💾', elem_id='open_folder')
button_save_as_config = gr.Button(
'Save as... 💾', elem_id='open_folder'
)
config_file_name = gr.Textbox(
label='',
placeholder="type the configuration file path or use the 'Open' button above to select it...",
interactive=True,
)
button_load_config = gr.Button('Load 💾', elem_id='open_folder')
config_file_name.change(
remove_doublequote,
inputs=[config_file_name],
outputs=[config_file_name],
)
return (
button_open_config,
button_save_config,
button_save_as_config,
config_file_name,
button_load_config,
)
def get_pretrained_model_name_or_path_file(
model_list, pretrained_model_name_or_path
):
pretrained_model_name_or_path = get_any_file_path(
pretrained_model_name_or_path
)
set_model_list(model_list, pretrained_model_name_or_path)
def gradio_source_model(save_model_as_choices = [
'same as source model',
'ckpt',
'diffusers',
'diffusers_safetensors',
'safetensors',
]):
with gr.Tab('Source model'):
# Define the input elements
with gr.Row():
pretrained_model_name_or_path = gr.Textbox(
label='Pretrained model name or path',
placeholder='enter the path to custom model or name of pretrained model',
value='runwayml/stable-diffusion-v1-5',
)
pretrained_model_name_or_path_file = gr.Button(
document_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_file.click(
get_any_file_path,
inputs=pretrained_model_name_or_path,
outputs=pretrained_model_name_or_path,
show_progress=False,
)
pretrained_model_name_or_path_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_folder.click(
get_folder_path,
inputs=pretrained_model_name_or_path,
outputs=pretrained_model_name_or_path,
show_progress=False,
)
model_list = gr.Dropdown(
label='Model Quick Pick',
choices=[
'custom',
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
'runwayml/stable-diffusion-v1-5',
'CompVis/stable-diffusion-v1-4',
],
value='runwayml/stable-diffusion-v1-5',
)
save_model_as = gr.Dropdown(
label='Save trained model as',
choices=save_model_as_choices,
value='safetensors',
)
with gr.Row():
v2 = gr.Checkbox(label='v2', value=False)
v_parameterization = gr.Checkbox(
label='v_parameterization', value=False
)
v2.change(
set_v2_checkbox,
inputs=[model_list, v2, v_parameterization],
outputs=[v2, v_parameterization],
show_progress=False,
)
v_parameterization.change(
set_v2_checkbox,
inputs=[model_list, v2, v_parameterization],
outputs=[v2, v_parameterization],
show_progress=False,
)
model_list.change(
set_pretrained_model_name_or_path_input,
inputs=[
model_list,
pretrained_model_name_or_path,
v2,
v_parameterization,
],
outputs=[
model_list,
pretrained_model_name_or_path,
v2,
v_parameterization,
],
show_progress=False,
)
# Update the model list and parameters when user click outside the button or field
pretrained_model_name_or_path.change(
set_model_list,
inputs=[
model_list,
pretrained_model_name_or_path,
v2,
v_parameterization,
],
outputs=[
model_list,
v2,
v_parameterization,
],
show_progress=False,
)
return (
pretrained_model_name_or_path,
v2,
v_parameterization,
save_model_as,
model_list,
)
def gradio_training(
learning_rate_value='1e-6',
lr_scheduler_value='constant',
lr_warmup_value='0',
):
with gr.Row():
train_batch_size = gr.Slider(
minimum=1,
maximum=64,
label='Train batch size',
value=1,
step=1,
)
epoch = gr.Number(label='Epoch', value=1, precision=0)
save_every_n_epochs = gr.Number(
label='Save every N epochs', value=1, precision=0
)
caption_extension = gr.Textbox(
label='Caption Extension',
placeholder='(Optional) Extension for caption files. default: .caption',
)
with gr.Row():
mixed_precision = gr.Dropdown(
label='Mixed precision',
choices=[
'no',
'fp16',
'bf16',
],
value='fp16',
)
save_precision = gr.Dropdown(
label='Save precision',
choices=[
'float',
'fp16',
'bf16',
],
value='fp16',
)
num_cpu_threads_per_process = gr.Slider(
minimum=1,
maximum=os.cpu_count(),
step=1,
label='Number of CPU threads per core',
value=2,
)
seed = gr.Textbox(label='Seed', placeholder='(Optional) eg:1234')
cache_latents = gr.Checkbox(label='Cache latent', value=True)
with gr.Row():
learning_rate = gr.Textbox(
label='Learning rate', value=learning_rate_value
)
lr_scheduler = gr.Dropdown(
label='LR Scheduler',
choices=[
'adafactor',
'constant',
'constant_with_warmup',
'cosine',
'cosine_with_restarts',
'linear',
'polynomial',
],
value=lr_scheduler_value,
)
lr_warmup = gr.Textbox(
label='LR warmup (% of steps)', value=lr_warmup_value
)
optimizer = gr.Dropdown(
label='Optimizer',
choices=[
'AdamW',
'AdamW8bit',
'Adafactor',
'DAdaptation',
'Lion',
'SGDNesterov',
'SGDNesterov8bit',
],
value='AdamW8bit',
interactive=True,
)
with gr.Row():
optimizer_args = gr.Textbox(
label='Optimizer extra arguments',
placeholder='(Optional) eg: relative_step=True scale_parameter=True warmup_init=True',
)
return (
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
num_cpu_threads_per_process,
seed,
caption_extension,
cache_latents,
optimizer,
optimizer_args,
)
def run_cmd_training(**kwargs):
options = [
f' --learning_rate="{kwargs.get("learning_rate", "")}"'
if kwargs.get('learning_rate')
else '',
f' --lr_scheduler="{kwargs.get("lr_scheduler", "")}"'
if kwargs.get('lr_scheduler')
else '',
f' --lr_warmup_steps="{kwargs.get("lr_warmup_steps", "")}"'
if kwargs.get('lr_warmup_steps')
else '',
f' --train_batch_size="{kwargs.get("train_batch_size", "")}"'
if kwargs.get('train_batch_size')
else '',
f' --max_train_steps="{kwargs.get("max_train_steps", "")}"'
if kwargs.get('max_train_steps')
else '',
f' --save_every_n_epochs="{int(kwargs.get("save_every_n_epochs", 1))}"'
if int(kwargs.get('save_every_n_epochs'))
else '',
f' --mixed_precision="{kwargs.get("mixed_precision", "")}"'
if kwargs.get('mixed_precision')
else '',
f' --save_precision="{kwargs.get("save_precision", "")}"'
if kwargs.get('save_precision')
else '',
f' --seed="{kwargs.get("seed", "")}"'
if kwargs.get('seed') != ''
else '',
f' --caption_extension="{kwargs.get("caption_extension", "")}"'
if kwargs.get('caption_extension')
else '',
' --cache_latents' if kwargs.get('cache_latents') else '',
# ' --use_lion_optimizer' if kwargs.get('optimizer') == 'Lion' else '',
f' --optimizer_type="{kwargs.get("optimizer", "AdamW")}"',
f' --optimizer_args {kwargs.get("optimizer_args", "")}'
if not kwargs.get('optimizer_args') == ''
else '',
]
run_cmd = ''.join(options)
return run_cmd
def gradio_advanced_training():
with gr.Row():
additional_parameters = gr.Textbox(
label='Additional parameters',
placeholder='(Optional) Use to provide additional parameters not handled by the GUI. Eg: --some_parameters "value"',
)
with gr.Row():
keep_tokens = gr.Slider(
label='Keep n tokens', value='0', minimum=0, maximum=32, step=1
)
clip_skip = gr.Slider(
label='Clip skip', value='1', minimum=1, maximum=12, step=1
)
max_token_length = gr.Dropdown(
label='Max Token Length',
choices=[
'75',
'150',
'225',
],
value='75',
)
full_fp16 = gr.Checkbox(
label='Full fp16 training (experimental)', value=False
)
with gr.Row():
gradient_checkpointing = gr.Checkbox(
label='Gradient checkpointing', value=False
)
shuffle_caption = gr.Checkbox(label='Shuffle caption', value=False)
persistent_data_loader_workers = gr.Checkbox(
label='Persistent data loader', value=False
)
mem_eff_attn = gr.Checkbox(
label='Memory efficient attention', value=False
)
with gr.Row():
# This use_8bit_adam element should be removed in a future release as it is no longer used
# use_8bit_adam = gr.Checkbox(
# label='Use 8bit adam', value=False, visible=False
# )
xformers = gr.Checkbox(label='Use xformers', value=True)
color_aug = gr.Checkbox(label='Color augmentation', value=False)
flip_aug = gr.Checkbox(label='Flip augmentation', value=False)
min_snr_gamma = gr.Slider(label='Min SNR gamma', value = 0, minimum=0, maximum=20, step=1)
with gr.Row():
bucket_no_upscale = gr.Checkbox(
label="Don't upscale bucket resolution", value=True
)
bucket_reso_steps = gr.Number(
label='Bucket resolution steps', value=64
)
random_crop = gr.Checkbox(
label='Random crop instead of center crop', value=False
)
noise_offset = gr.Textbox(
label='Noise offset (0 - 1)', placeholder='(Oprional) eg: 0.1'
)
with gr.Row():
caption_dropout_every_n_epochs = gr.Number(
label='Dropout caption every n epochs', value=0
)
caption_dropout_rate = gr.Slider(
label='Rate of caption dropout', value=0, minimum=0, maximum=1
)
vae_batch_size = gr.Slider(
label='VAE batch size',
minimum=0,
maximum=32,
value=0,
step=1
)
with gr.Row():
save_state = gr.Checkbox(label='Save training state', value=False)
resume = gr.Textbox(
label='Resume from saved training state',
placeholder='path to "last-state" state folder to resume from',
)
resume_button = gr.Button('📂', elem_id='open_folder_small')
resume_button.click(
get_folder_path,
outputs=resume,
show_progress=False,
)
max_train_epochs = gr.Textbox(
label='Max train epoch',
placeholder='(Optional) Override number of epoch',
)
max_data_loader_n_workers = gr.Textbox(
label='Max num workers for DataLoader',
placeholder='(Optional) Override number of epoch. Default: 8',
value="0",
)
return (
# use_8bit_adam,
xformers,
full_fp16,
gradient_checkpointing,
shuffle_caption,
color_aug,
flip_aug,
clip_skip,
mem_eff_attn,
save_state,
resume,
max_token_length,
max_train_epochs,
max_data_loader_n_workers,
keep_tokens,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
caption_dropout_every_n_epochs,
caption_dropout_rate,
noise_offset,
additional_parameters,
vae_batch_size,
min_snr_gamma,
)
def run_cmd_advanced_training(**kwargs):
options = [
f' --max_train_epochs="{kwargs.get("max_train_epochs", "")}"'
if kwargs.get('max_train_epochs')
else '',
f' --max_data_loader_n_workers="{kwargs.get("max_data_loader_n_workers", "")}"'
if kwargs.get('max_data_loader_n_workers')
else '',
f' --max_token_length={kwargs.get("max_token_length", "")}'
if int(kwargs.get('max_token_length', 75)) > 75
else '',
f' --clip_skip={kwargs.get("clip_skip", "")}'
if int(kwargs.get('clip_skip', 1)) > 1
else '',
f' --resume="{kwargs.get("resume", "")}"'
if kwargs.get('resume')
else '',
f' --keep_tokens="{kwargs.get("keep_tokens", "")}"'
if int(kwargs.get('keep_tokens', 0)) > 0
else '',
f' --caption_dropout_every_n_epochs="{int(kwargs.get("caption_dropout_every_n_epochs", 0))}"'
if int(kwargs.get('caption_dropout_every_n_epochs', 0)) > 0
else '',
f' --caption_dropout_every_n_epochs="{int(kwargs.get("caption_dropout_every_n_epochs", 0))}"'
if int(kwargs.get('caption_dropout_every_n_epochs', 0)) > 0
else '',
f' --vae_batch_size="{kwargs.get("vae_batch_size", 0)}"'
if int(kwargs.get('vae_batch_size', 0)) > 0
else '',
f' --bucket_reso_steps={int(kwargs.get("bucket_reso_steps", 1))}'
if int(kwargs.get('bucket_reso_steps', 64)) >= 1
else '',
f' --min_snr_gamma={int(kwargs.get("min_snr_gamma", 0))}'
if int(kwargs.get('min_snr_gamma', 0)) >= 1
else '',
' --save_state' if kwargs.get('save_state') else '',
' --mem_eff_attn' if kwargs.get('mem_eff_attn') else '',
' --color_aug' if kwargs.get('color_aug') else '',
' --flip_aug' if kwargs.get('flip_aug') else '',
' --shuffle_caption' if kwargs.get('shuffle_caption') else '',
' --gradient_checkpointing' if kwargs.get('gradient_checkpointing')
else '',
' --full_fp16' if kwargs.get('full_fp16') else '',
' --xformers' if kwargs.get('xformers') else '',
# ' --use_8bit_adam' if kwargs.get('use_8bit_adam') else '',
' --persistent_data_loader_workers'
if kwargs.get('persistent_data_loader_workers')
else '',
' --bucket_no_upscale' if kwargs.get('bucket_no_upscale') else '',
' --random_crop' if kwargs.get('random_crop') else '',
f' --noise_offset={float(kwargs.get("noise_offset", 0))}'
if not kwargs.get('noise_offset', '') == ''
else '',
f' {kwargs.get("additional_parameters", "")}',
]
run_cmd = ''.join(options)
return run_cmd