KohyaSS/library/custom_train_functions.py
2023-03-28 11:54:42 -04:00

19 lines
1023 B
Python

import torch
import argparse
def apply_snr_weight(loss, timesteps, noise_scheduler, gamma):
alphas_cumprod = noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - alphas_cumprod)
alpha = sqrt_alphas_cumprod
sigma = sqrt_one_minus_alphas_cumprod
all_snr = (alpha / sigma) ** 2
snr = torch.stack([all_snr[t] for t in timesteps])
gamma_over_snr = torch.div(torch.ones_like(snr)*gamma,snr)
snr_weight = torch.minimum(gamma_over_snr,torch.ones_like(gamma_over_snr)).float() #from paper
loss = loss * snr_weight
return loss
def add_custom_train_arguments(parser: argparse.ArgumentParser):
parser.add_argument("--min_snr_gamma", type=float, default=None, help="gamma for reducing the weight of high loss timesteps. Lower numbers have stronger effect. 5 is recommended by paper. / 低いタイムステップでの高いlossに対して重みを減らすためのgamma値、低いほど効果が強く、論文では5が推奨")