9d3c402973
- Finetune, add "Dataset preparation" tab to group task specific options
984 lines
32 KiB
Python
984 lines
32 KiB
Python
# v1: initial release
|
|
# v2: add open and save folder icons
|
|
# v3: Add new Utilities tab for Dreambooth folder preparation
|
|
# v3.1: Adding captionning of images to utilities
|
|
|
|
import gradio as gr
|
|
import json
|
|
import math
|
|
import os
|
|
import subprocess
|
|
import pathlib
|
|
import shutil
|
|
import argparse
|
|
from library.common_gui import (
|
|
get_folder_path,
|
|
remove_doublequote,
|
|
get_file_path,
|
|
get_any_file_path,
|
|
get_saveasfile_path,
|
|
color_aug_changed,
|
|
)
|
|
from library.dreambooth_folder_creation_gui import (
|
|
gradio_dreambooth_folder_creation_tab,
|
|
)
|
|
from library.dataset_balancing_gui import gradio_dataset_balancing_tab
|
|
from library.utilities import utilities_tab
|
|
from easygui import msgbox
|
|
|
|
folder_symbol = '\U0001f4c2' # 📂
|
|
refresh_symbol = '\U0001f504' # 🔄
|
|
save_style_symbol = '\U0001f4be' # 💾
|
|
document_symbol = '\U0001F4C4' # 📄
|
|
|
|
|
|
def save_configuration(
|
|
save_as,
|
|
file_path,
|
|
pretrained_model_name_or_path,
|
|
v2,
|
|
v_parameterization,
|
|
logging_dir,
|
|
train_data_dir,
|
|
reg_data_dir,
|
|
output_dir,
|
|
max_resolution,
|
|
lr_scheduler,
|
|
lr_warmup,
|
|
train_batch_size,
|
|
epoch,
|
|
save_every_n_epochs,
|
|
mixed_precision,
|
|
save_precision,
|
|
seed,
|
|
num_cpu_threads_per_process,
|
|
cache_latent,
|
|
caption_extention,
|
|
enable_bucket,
|
|
gradient_checkpointing,
|
|
full_fp16,
|
|
no_token_padding,
|
|
stop_text_encoder_training,
|
|
use_8bit_adam,
|
|
xformers,
|
|
save_model_as,
|
|
shuffle_caption,
|
|
save_state,
|
|
resume,
|
|
prior_loss_weight,
|
|
text_encoder_lr,
|
|
unet_lr,
|
|
network_dim,
|
|
lora_network_weights,
|
|
color_aug,
|
|
flip_aug,
|
|
):
|
|
original_file_path = file_path
|
|
|
|
save_as_bool = True if save_as.get('label') == 'True' else False
|
|
|
|
if save_as_bool:
|
|
print('Save as...')
|
|
file_path = get_saveasfile_path(file_path)
|
|
else:
|
|
print('Save...')
|
|
if file_path == None or file_path == '':
|
|
file_path = get_saveasfile_path(file_path)
|
|
|
|
# print(file_path)
|
|
|
|
if file_path == None or file_path == '':
|
|
return original_file_path # In case a file_path was provided and the user decide to cancel the open action
|
|
|
|
# Return the values of the variables as a dictionary
|
|
variables = {
|
|
'pretrained_model_name_or_path': pretrained_model_name_or_path,
|
|
'v2': v2,
|
|
'v_parameterization': v_parameterization,
|
|
'logging_dir': logging_dir,
|
|
'train_data_dir': train_data_dir,
|
|
'reg_data_dir': reg_data_dir,
|
|
'output_dir': output_dir,
|
|
'max_resolution': max_resolution,
|
|
'lr_scheduler': lr_scheduler,
|
|
'lr_warmup': lr_warmup,
|
|
'train_batch_size': train_batch_size,
|
|
'epoch': epoch,
|
|
'save_every_n_epochs': save_every_n_epochs,
|
|
'mixed_precision': mixed_precision,
|
|
'save_precision': save_precision,
|
|
'seed': seed,
|
|
'num_cpu_threads_per_process': num_cpu_threads_per_process,
|
|
'cache_latent': cache_latent,
|
|
'caption_extention': caption_extention,
|
|
'enable_bucket': enable_bucket,
|
|
'gradient_checkpointing': gradient_checkpointing,
|
|
'full_fp16': full_fp16,
|
|
'no_token_padding': no_token_padding,
|
|
'stop_text_encoder_training': stop_text_encoder_training,
|
|
'use_8bit_adam': use_8bit_adam,
|
|
'xformers': xformers,
|
|
'save_model_as': save_model_as,
|
|
'shuffle_caption': shuffle_caption,
|
|
'save_state': save_state,
|
|
'resume': resume,
|
|
'prior_loss_weight': prior_loss_weight,
|
|
'text_encoder_lr': text_encoder_lr,
|
|
'unet_lr': unet_lr,
|
|
'network_dim': network_dim,
|
|
'lora_network_weights': lora_network_weights,
|
|
'color_aug': color_aug,
|
|
'flip_aug': flip_aug,
|
|
}
|
|
|
|
# Save the data to the selected file
|
|
with open(file_path, 'w') as file:
|
|
json.dump(variables, file)
|
|
|
|
return file_path
|
|
|
|
|
|
def open_configuration(
|
|
file_path,
|
|
pretrained_model_name_or_path,
|
|
v2,
|
|
v_parameterization,
|
|
logging_dir,
|
|
train_data_dir,
|
|
reg_data_dir,
|
|
output_dir,
|
|
max_resolution,
|
|
lr_scheduler,
|
|
lr_warmup,
|
|
train_batch_size,
|
|
epoch,
|
|
save_every_n_epochs,
|
|
mixed_precision,
|
|
save_precision,
|
|
seed,
|
|
num_cpu_threads_per_process,
|
|
cache_latent,
|
|
caption_extention,
|
|
enable_bucket,
|
|
gradient_checkpointing,
|
|
full_fp16,
|
|
no_token_padding,
|
|
stop_text_encoder_training,
|
|
use_8bit_adam,
|
|
xformers,
|
|
save_model_as,
|
|
shuffle_caption,
|
|
save_state,
|
|
resume,
|
|
prior_loss_weight,
|
|
text_encoder_lr,
|
|
unet_lr,
|
|
network_dim,
|
|
lora_network_weights,
|
|
color_aug,
|
|
flip_aug,
|
|
):
|
|
|
|
original_file_path = file_path
|
|
file_path = get_file_path(file_path)
|
|
# print(file_path)
|
|
|
|
if not file_path == '' and not file_path == None:
|
|
# load variables from JSON file
|
|
with open(file_path, 'r') as f:
|
|
my_data = json.load(f)
|
|
else:
|
|
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
|
|
my_data = {}
|
|
|
|
# Return the values of the variables as a dictionary
|
|
return (
|
|
file_path,
|
|
my_data.get(
|
|
'pretrained_model_name_or_path', pretrained_model_name_or_path
|
|
),
|
|
my_data.get('v2', v2),
|
|
my_data.get('v_parameterization', v_parameterization),
|
|
my_data.get('logging_dir', logging_dir),
|
|
my_data.get('train_data_dir', train_data_dir),
|
|
my_data.get('reg_data_dir', reg_data_dir),
|
|
my_data.get('output_dir', output_dir),
|
|
my_data.get('max_resolution', max_resolution),
|
|
my_data.get('lr_scheduler', lr_scheduler),
|
|
my_data.get('lr_warmup', lr_warmup),
|
|
my_data.get('train_batch_size', train_batch_size),
|
|
my_data.get('epoch', epoch),
|
|
my_data.get('save_every_n_epochs', save_every_n_epochs),
|
|
my_data.get('mixed_precision', mixed_precision),
|
|
my_data.get('save_precision', save_precision),
|
|
my_data.get('seed', seed),
|
|
my_data.get(
|
|
'num_cpu_threads_per_process', num_cpu_threads_per_process
|
|
),
|
|
my_data.get('cache_latent', cache_latent),
|
|
my_data.get('caption_extention', caption_extention),
|
|
my_data.get('enable_bucket', enable_bucket),
|
|
my_data.get('gradient_checkpointing', gradient_checkpointing),
|
|
my_data.get('full_fp16', full_fp16),
|
|
my_data.get('no_token_padding', no_token_padding),
|
|
my_data.get('stop_text_encoder_training', stop_text_encoder_training),
|
|
my_data.get('use_8bit_adam', use_8bit_adam),
|
|
my_data.get('xformers', xformers),
|
|
my_data.get('save_model_as', save_model_as),
|
|
my_data.get('shuffle_caption', shuffle_caption),
|
|
my_data.get('save_state', save_state),
|
|
my_data.get('resume', resume),
|
|
my_data.get('prior_loss_weight', prior_loss_weight),
|
|
my_data.get('text_encoder_lr', text_encoder_lr),
|
|
my_data.get('unet_lr', unet_lr),
|
|
my_data.get('network_dim', network_dim),
|
|
my_data.get('lora_network_weights', lora_network_weights),
|
|
my_data.get('color_aug', color_aug),
|
|
my_data.get('flip_aug', flip_aug),
|
|
)
|
|
|
|
|
|
def train_model(
|
|
pretrained_model_name_or_path,
|
|
v2,
|
|
v_parameterization,
|
|
logging_dir,
|
|
train_data_dir,
|
|
reg_data_dir,
|
|
output_dir,
|
|
max_resolution,
|
|
lr_scheduler,
|
|
lr_warmup,
|
|
train_batch_size,
|
|
epoch,
|
|
save_every_n_epochs,
|
|
mixed_precision,
|
|
save_precision,
|
|
seed,
|
|
num_cpu_threads_per_process,
|
|
cache_latent,
|
|
caption_extension,
|
|
enable_bucket,
|
|
gradient_checkpointing,
|
|
full_fp16,
|
|
no_token_padding,
|
|
stop_text_encoder_training_pct,
|
|
use_8bit_adam,
|
|
xformers,
|
|
save_model_as,
|
|
shuffle_caption,
|
|
save_state,
|
|
resume,
|
|
prior_loss_weight,
|
|
text_encoder_lr,
|
|
unet_lr,
|
|
network_dim,
|
|
lora_network_weights,
|
|
color_aug,
|
|
flip_aug,
|
|
):
|
|
def save_inference_file(output_dir, v2, v_parameterization):
|
|
# Copy inference model for v2 if required
|
|
if v2 and v_parameterization:
|
|
print(f'Saving v2-inference-v.yaml as {output_dir}/last.yaml')
|
|
shutil.copy(
|
|
f'./v2_inference/v2-inference-v.yaml',
|
|
f'{output_dir}/last.yaml',
|
|
)
|
|
elif v2:
|
|
print(f'Saving v2-inference.yaml as {output_dir}/last.yaml')
|
|
shutil.copy(
|
|
f'./v2_inference/v2-inference.yaml',
|
|
f'{output_dir}/last.yaml',
|
|
)
|
|
|
|
if pretrained_model_name_or_path == '':
|
|
msgbox('Source model information is missing')
|
|
return
|
|
|
|
if train_data_dir == '':
|
|
msgbox('Image folder path is missing')
|
|
return
|
|
|
|
if not os.path.exists(train_data_dir):
|
|
msgbox('Image folder does not exist')
|
|
return
|
|
|
|
if reg_data_dir != '':
|
|
if not os.path.exists(reg_data_dir):
|
|
msgbox('Regularisation folder does not exist')
|
|
return
|
|
|
|
if output_dir == '':
|
|
msgbox('Output folder path is missing')
|
|
return
|
|
|
|
# If string is empty set string to 0.
|
|
if text_encoder_lr == '':
|
|
text_encoder_lr = 0
|
|
if unet_lr == '':
|
|
unet_lr = 0
|
|
|
|
if (float(text_encoder_lr) == 0) and (float(unet_lr) == 0):
|
|
msgbox(
|
|
'At least one Learning Rate value for "Text encoder" or "Unet" need to be provided'
|
|
)
|
|
return
|
|
|
|
# Get a list of all subfolders in train_data_dir
|
|
subfolders = [
|
|
f
|
|
for f in os.listdir(train_data_dir)
|
|
if os.path.isdir(os.path.join(train_data_dir, f))
|
|
]
|
|
|
|
total_steps = 0
|
|
|
|
# Loop through each subfolder and extract the number of repeats
|
|
for folder in subfolders:
|
|
# Extract the number of repeats from the folder name
|
|
repeats = int(folder.split('_')[0])
|
|
|
|
# Count the number of images in the folder
|
|
num_images = len(
|
|
[
|
|
f
|
|
for f in os.listdir(os.path.join(train_data_dir, folder))
|
|
if f.endswith('.jpg')
|
|
or f.endswith('.jpeg')
|
|
or f.endswith('.png')
|
|
or f.endswith('.webp')
|
|
]
|
|
)
|
|
|
|
# Calculate the total number of steps for this folder
|
|
steps = repeats * num_images
|
|
total_steps += steps
|
|
|
|
# Print the result
|
|
print(f'Folder {folder}: {steps} steps')
|
|
|
|
# Print the result
|
|
# print(f"{total_steps} total steps")
|
|
|
|
if reg_data_dir == '':
|
|
reg_factor = 1
|
|
else:
|
|
print(
|
|
'Regularisation images are used... Will double the number of steps required...'
|
|
)
|
|
reg_factor = 2
|
|
|
|
# calculate max_train_steps
|
|
max_train_steps = int(
|
|
math.ceil(
|
|
float(total_steps)
|
|
/ int(train_batch_size)
|
|
* int(epoch)
|
|
* int(reg_factor)
|
|
)
|
|
)
|
|
print(f'max_train_steps = {max_train_steps}')
|
|
|
|
# calculate stop encoder training
|
|
if stop_text_encoder_training_pct == None:
|
|
stop_text_encoder_training = 0
|
|
else:
|
|
stop_text_encoder_training = math.ceil(
|
|
float(max_train_steps) / 100 * int(stop_text_encoder_training_pct)
|
|
)
|
|
print(f'stop_text_encoder_training = {stop_text_encoder_training}')
|
|
|
|
lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100))
|
|
print(f'lr_warmup_steps = {lr_warmup_steps}')
|
|
|
|
run_cmd = f'accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process} "train_network.py"'
|
|
if v2:
|
|
run_cmd += ' --v2'
|
|
if v_parameterization:
|
|
run_cmd += ' --v_parameterization'
|
|
if cache_latent:
|
|
run_cmd += ' --cache_latents'
|
|
if enable_bucket:
|
|
run_cmd += ' --enable_bucket'
|
|
if gradient_checkpointing:
|
|
run_cmd += ' --gradient_checkpointing'
|
|
if full_fp16:
|
|
run_cmd += ' --full_fp16'
|
|
if no_token_padding:
|
|
run_cmd += ' --no_token_padding'
|
|
if use_8bit_adam:
|
|
run_cmd += ' --use_8bit_adam'
|
|
if xformers:
|
|
run_cmd += ' --xformers'
|
|
if shuffle_caption:
|
|
run_cmd += ' --shuffle_caption'
|
|
if save_state:
|
|
run_cmd += ' --save_state'
|
|
if color_aug:
|
|
run_cmd += ' --color_aug'
|
|
if flip_aug:
|
|
run_cmd += ' --flip_aug'
|
|
run_cmd += (
|
|
f' --pretrained_model_name_or_path={pretrained_model_name_or_path}'
|
|
)
|
|
run_cmd += f' --train_data_dir="{train_data_dir}"'
|
|
if len(reg_data_dir):
|
|
run_cmd += f' --reg_data_dir="{reg_data_dir}"'
|
|
run_cmd += f' --resolution={max_resolution}'
|
|
run_cmd += f' --output_dir={output_dir}'
|
|
run_cmd += f' --train_batch_size={train_batch_size}'
|
|
# run_cmd += f' --learning_rate={learning_rate}'
|
|
run_cmd += f' --lr_scheduler={lr_scheduler}'
|
|
run_cmd += f' --lr_warmup_steps={lr_warmup_steps}'
|
|
run_cmd += f' --max_train_steps={max_train_steps}'
|
|
run_cmd += f' --use_8bit_adam'
|
|
run_cmd += f' --xformers'
|
|
run_cmd += f' --mixed_precision={mixed_precision}'
|
|
run_cmd += f' --save_every_n_epochs={save_every_n_epochs}'
|
|
run_cmd += f' --seed={seed}'
|
|
run_cmd += f' --save_precision={save_precision}'
|
|
run_cmd += f' --logging_dir={logging_dir}'
|
|
if not caption_extension == '':
|
|
run_cmd += f' --caption_extension={caption_extension}'
|
|
if not stop_text_encoder_training == 0:
|
|
run_cmd += (
|
|
f' --stop_text_encoder_training={stop_text_encoder_training}'
|
|
)
|
|
if not save_model_as == 'same as source model':
|
|
run_cmd += f' --save_model_as={save_model_as}'
|
|
if not resume == '':
|
|
run_cmd += f' --resume={resume}'
|
|
if not float(prior_loss_weight) == 1.0:
|
|
run_cmd += f' --prior_loss_weight={prior_loss_weight}'
|
|
run_cmd += f' --network_module=networks.lora'
|
|
if not float(text_encoder_lr) == 0:
|
|
run_cmd += f' --text_encoder_lr={text_encoder_lr}'
|
|
else:
|
|
run_cmd += f' --network_train_unet_only'
|
|
if not float(unet_lr) == 0:
|
|
run_cmd += f' --unet_lr={unet_lr}'
|
|
else:
|
|
run_cmd += f' --network_train_text_encoder_only'
|
|
# if network_train == 'Text encoder only':
|
|
# run_cmd += f' --network_train_text_encoder_only'
|
|
# elif network_train == 'Unet only':
|
|
# run_cmd += f' --network_train_unet_only'
|
|
run_cmd += f' --network_dim={network_dim}'
|
|
if not lora_network_weights == '':
|
|
run_cmd += f' --network_weights={lora_network_weights}'
|
|
|
|
print(run_cmd)
|
|
# Run the command
|
|
subprocess.run(run_cmd)
|
|
|
|
# check if output_dir/last is a folder... therefore it is a diffuser model
|
|
last_dir = pathlib.Path(f'{output_dir}/last')
|
|
|
|
if not last_dir.is_dir():
|
|
# Copy inference model for v2 if required
|
|
save_inference_file(output_dir, v2, v_parameterization)
|
|
|
|
|
|
def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
|
|
# define a list of substrings to search for
|
|
substrings_v2 = [
|
|
'stabilityai/stable-diffusion-2-1-base',
|
|
'stabilityai/stable-diffusion-2-base',
|
|
]
|
|
|
|
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
|
|
if str(value) in substrings_v2:
|
|
print('SD v2 model detected. Setting --v2 parameter')
|
|
v2 = True
|
|
v_parameterization = False
|
|
|
|
return value, v2, v_parameterization
|
|
|
|
# define a list of substrings to search for v-objective
|
|
substrings_v_parameterization = [
|
|
'stabilityai/stable-diffusion-2-1',
|
|
'stabilityai/stable-diffusion-2',
|
|
]
|
|
|
|
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
|
|
if str(value) in substrings_v_parameterization:
|
|
print(
|
|
'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization'
|
|
)
|
|
v2 = True
|
|
v_parameterization = True
|
|
|
|
return value, v2, v_parameterization
|
|
|
|
# define a list of substrings to v1.x
|
|
substrings_v1_model = [
|
|
'CompVis/stable-diffusion-v1-4',
|
|
'runwayml/stable-diffusion-v1-5',
|
|
]
|
|
|
|
if str(value) in substrings_v1_model:
|
|
v2 = False
|
|
v_parameterization = False
|
|
|
|
return value, v2, v_parameterization
|
|
|
|
if value == 'custom':
|
|
value = ''
|
|
v2 = False
|
|
v_parameterization = False
|
|
|
|
return value, v2, v_parameterization
|
|
|
|
|
|
def UI(username, password):
|
|
css = ''
|
|
|
|
if os.path.exists('./style.css'):
|
|
with open(os.path.join('./style.css'), 'r', encoding='utf8') as file:
|
|
print('Load CSS...')
|
|
css += file.read() + '\n'
|
|
|
|
interface = gr.Blocks(css=css)
|
|
|
|
with interface:
|
|
with gr.Tab('LoRA'):
|
|
(
|
|
train_data_dir_input,
|
|
reg_data_dir_input,
|
|
output_dir_input,
|
|
logging_dir_input,
|
|
) = lora_tab()
|
|
with gr.Tab('Utilities'):
|
|
utilities_tab(
|
|
train_data_dir_input=train_data_dir_input,
|
|
reg_data_dir_input=reg_data_dir_input,
|
|
output_dir_input=output_dir_input,
|
|
logging_dir_input=logging_dir_input,
|
|
enable_copy_info_button=True,
|
|
)
|
|
|
|
# Show the interface
|
|
if not username == '':
|
|
interface.launch(auth=(username, password))
|
|
else:
|
|
interface.launch()
|
|
|
|
|
|
def lora_tab(
|
|
train_data_dir_input=gr.Textbox(),
|
|
reg_data_dir_input=gr.Textbox(),
|
|
output_dir_input=gr.Textbox(),
|
|
logging_dir_input=gr.Textbox(),
|
|
):
|
|
dummy_db_true = gr.Label(value=True, visible=False)
|
|
dummy_db_false = gr.Label(value=False, visible=False)
|
|
gr.Markdown(
|
|
'Train a custom model using kohya train network LoRA python code...'
|
|
)
|
|
with gr.Accordion('Configuration file', open=False):
|
|
with gr.Row():
|
|
button_open_config = gr.Button('Open 📂', elem_id='open_folder')
|
|
button_save_config = gr.Button('Save 💾', elem_id='open_folder')
|
|
button_save_as_config = gr.Button(
|
|
'Save as... 💾', elem_id='open_folder'
|
|
)
|
|
config_file_name = gr.Textbox(
|
|
label='',
|
|
placeholder="type the configuration file path or use the 'Open' button above to select it...",
|
|
interactive=True,
|
|
)
|
|
# config_file_name.change(
|
|
# remove_doublequote,
|
|
# inputs=[config_file_name],
|
|
# outputs=[config_file_name],
|
|
# )
|
|
with gr.Tab('Source model'):
|
|
# Define the input elements
|
|
with gr.Row():
|
|
pretrained_model_name_or_path_input = gr.Textbox(
|
|
label='Pretrained model name or path',
|
|
placeholder='enter the path to custom model or name of pretrained model',
|
|
)
|
|
pretrained_model_name_or_path_file = gr.Button(
|
|
document_symbol, elem_id='open_folder_small'
|
|
)
|
|
pretrained_model_name_or_path_file.click(
|
|
get_any_file_path,
|
|
inputs=[pretrained_model_name_or_path_input],
|
|
outputs=pretrained_model_name_or_path_input,
|
|
)
|
|
pretrained_model_name_or_path_folder = gr.Button(
|
|
folder_symbol, elem_id='open_folder_small'
|
|
)
|
|
pretrained_model_name_or_path_folder.click(
|
|
get_folder_path,
|
|
outputs=pretrained_model_name_or_path_input,
|
|
)
|
|
model_list = gr.Dropdown(
|
|
label='(Optional) Model Quick Pick',
|
|
choices=[
|
|
'custom',
|
|
'stabilityai/stable-diffusion-2-1-base',
|
|
'stabilityai/stable-diffusion-2-base',
|
|
'stabilityai/stable-diffusion-2-1',
|
|
'stabilityai/stable-diffusion-2',
|
|
'runwayml/stable-diffusion-v1-5',
|
|
'CompVis/stable-diffusion-v1-4',
|
|
],
|
|
)
|
|
save_model_as_dropdown = gr.Dropdown(
|
|
label='Save trained model as',
|
|
choices=[
|
|
'same as source model',
|
|
'ckpt',
|
|
'diffusers',
|
|
'diffusers_safetensors',
|
|
'safetensors',
|
|
],
|
|
value='same as source model',
|
|
)
|
|
|
|
with gr.Row():
|
|
v2_input = gr.Checkbox(label='v2', value=True)
|
|
v_parameterization_input = gr.Checkbox(
|
|
label='v_parameterization', value=False
|
|
)
|
|
pretrained_model_name_or_path_input.change(
|
|
remove_doublequote,
|
|
inputs=[pretrained_model_name_or_path_input],
|
|
outputs=[pretrained_model_name_or_path_input],
|
|
)
|
|
model_list.change(
|
|
set_pretrained_model_name_or_path_input,
|
|
inputs=[model_list, v2_input, v_parameterization_input],
|
|
outputs=[
|
|
pretrained_model_name_or_path_input,
|
|
v2_input,
|
|
v_parameterization_input,
|
|
],
|
|
)
|
|
|
|
with gr.Tab('Folders'):
|
|
with gr.Row():
|
|
train_data_dir_input = gr.Textbox(
|
|
label='Image folder',
|
|
placeholder='Folder where the training folders containing the images are located',
|
|
)
|
|
train_data_dir_input_folder = gr.Button(
|
|
'📂', elem_id='open_folder_small'
|
|
)
|
|
train_data_dir_input_folder.click(
|
|
get_folder_path, outputs=train_data_dir_input
|
|
)
|
|
reg_data_dir_input = gr.Textbox(
|
|
label='Regularisation folder',
|
|
placeholder='(Optional) Folder where where the regularization folders containing the images are located',
|
|
)
|
|
reg_data_dir_input_folder = gr.Button(
|
|
'📂', elem_id='open_folder_small'
|
|
)
|
|
reg_data_dir_input_folder.click(
|
|
get_folder_path, outputs=reg_data_dir_input
|
|
)
|
|
with gr.Row():
|
|
output_dir_input = gr.Textbox(
|
|
label='Output folder',
|
|
placeholder='Folder to output trained model',
|
|
)
|
|
output_dir_input_folder = gr.Button(
|
|
'📂', elem_id='open_folder_small'
|
|
)
|
|
output_dir_input_folder.click(
|
|
get_folder_path, outputs=output_dir_input
|
|
)
|
|
logging_dir_input = gr.Textbox(
|
|
label='Logging folder',
|
|
placeholder='Optional: enable logging and output TensorBoard log to this folder',
|
|
)
|
|
logging_dir_input_folder = gr.Button(
|
|
'📂', elem_id='open_folder_small'
|
|
)
|
|
logging_dir_input_folder.click(
|
|
get_folder_path, outputs=logging_dir_input
|
|
)
|
|
train_data_dir_input.change(
|
|
remove_doublequote,
|
|
inputs=[train_data_dir_input],
|
|
outputs=[train_data_dir_input],
|
|
)
|
|
reg_data_dir_input.change(
|
|
remove_doublequote,
|
|
inputs=[reg_data_dir_input],
|
|
outputs=[reg_data_dir_input],
|
|
)
|
|
output_dir_input.change(
|
|
remove_doublequote,
|
|
inputs=[output_dir_input],
|
|
outputs=[output_dir_input],
|
|
)
|
|
logging_dir_input.change(
|
|
remove_doublequote,
|
|
inputs=[logging_dir_input],
|
|
outputs=[logging_dir_input],
|
|
)
|
|
with gr.Tab('Training parameters'):
|
|
with gr.Row():
|
|
lora_network_weights = gr.Textbox(
|
|
label='LoRA network weights',
|
|
placeholder='{Optional) Path to existing LoRA network weights to resume training',
|
|
)
|
|
lora_network_weights_file = gr.Button(
|
|
document_symbol, elem_id='open_folder_small'
|
|
)
|
|
lora_network_weights_file.click(
|
|
get_any_file_path,
|
|
inputs=[lora_network_weights],
|
|
outputs=lora_network_weights,
|
|
)
|
|
with gr.Row():
|
|
# learning_rate_input = gr.Textbox(label='Learning rate', value=1e-4, visible=False)
|
|
lr_scheduler_input = gr.Dropdown(
|
|
label='LR Scheduler',
|
|
choices=[
|
|
'constant',
|
|
'constant_with_warmup',
|
|
'cosine',
|
|
'cosine_with_restarts',
|
|
'linear',
|
|
'polynomial',
|
|
],
|
|
value='constant',
|
|
)
|
|
lr_warmup_input = gr.Textbox(label='LR warmup', value=0)
|
|
with gr.Row():
|
|
text_encoder_lr = gr.Textbox(
|
|
label='Text Encoder learning rate',
|
|
value=1e-6,
|
|
placeholder='Optional',
|
|
)
|
|
unet_lr = gr.Textbox(
|
|
label='Unet learning rate', value=1e-4, placeholder='Optional'
|
|
)
|
|
# network_train = gr.Dropdown(
|
|
# label='Network to train',
|
|
# choices=[
|
|
# 'Text encoder and Unet',
|
|
# 'Text encoder only',
|
|
# 'Unet only',
|
|
# ],
|
|
# value='Text encoder and Unet',
|
|
# interactive=True
|
|
# )
|
|
network_dim = gr.Slider(
|
|
minimum=1,
|
|
maximum=32,
|
|
label='Network Dimension',
|
|
value=4,
|
|
step=1,
|
|
interactive=True,
|
|
)
|
|
with gr.Row():
|
|
train_batch_size_input = gr.Slider(
|
|
minimum=1,
|
|
maximum=32,
|
|
label='Train batch size',
|
|
value=1,
|
|
step=1,
|
|
)
|
|
epoch_input = gr.Textbox(label='Epoch', value=1)
|
|
save_every_n_epochs_input = gr.Textbox(
|
|
label='Save every N epochs', value=1
|
|
)
|
|
with gr.Row():
|
|
mixed_precision_input = gr.Dropdown(
|
|
label='Mixed precision',
|
|
choices=[
|
|
'no',
|
|
'fp16',
|
|
'bf16',
|
|
],
|
|
value='fp16',
|
|
)
|
|
save_precision_input = gr.Dropdown(
|
|
label='Save precision',
|
|
choices=[
|
|
'float',
|
|
'fp16',
|
|
'bf16',
|
|
],
|
|
value='fp16',
|
|
)
|
|
num_cpu_threads_per_process_input = gr.Slider(
|
|
minimum=1,
|
|
maximum=os.cpu_count(),
|
|
step=1,
|
|
label='Number of CPU threads per process',
|
|
value=os.cpu_count(),
|
|
)
|
|
with gr.Row():
|
|
seed_input = gr.Textbox(label='Seed', value=1234)
|
|
max_resolution_input = gr.Textbox(
|
|
label='Max resolution',
|
|
value='512,512',
|
|
placeholder='512,512',
|
|
)
|
|
with gr.Row():
|
|
caption_extention_input = gr.Textbox(
|
|
label='Caption Extension',
|
|
placeholder='(Optional) Extension for caption files. default: .caption',
|
|
)
|
|
stop_text_encoder_training_input = gr.Slider(
|
|
minimum=0,
|
|
maximum=100,
|
|
value=0,
|
|
step=1,
|
|
label='Stop text encoder training',
|
|
)
|
|
with gr.Row():
|
|
enable_bucket_input = gr.Checkbox(
|
|
label='Enable buckets', value=True
|
|
)
|
|
cache_latent_input = gr.Checkbox(label='Cache latent', value=True)
|
|
use_8bit_adam_input = gr.Checkbox(
|
|
label='Use 8bit adam', value=True
|
|
)
|
|
xformers_input = gr.Checkbox(label='Use xformers', value=True)
|
|
with gr.Accordion('Advanced Configuration', open=False):
|
|
with gr.Row():
|
|
full_fp16_input = gr.Checkbox(
|
|
label='Full fp16 training (experimental)', value=False
|
|
)
|
|
no_token_padding_input = gr.Checkbox(
|
|
label='No token padding', value=False
|
|
)
|
|
|
|
gradient_checkpointing_input = gr.Checkbox(
|
|
label='Gradient checkpointing', value=False
|
|
)
|
|
|
|
shuffle_caption = gr.Checkbox(
|
|
label='Shuffle caption', value=False
|
|
)
|
|
save_state = gr.Checkbox(
|
|
label='Save training state', value=False
|
|
)
|
|
color_aug = gr.Checkbox(
|
|
label='Color augmentation', value=False
|
|
)
|
|
flip_aug = gr.Checkbox(label='Flip augmentation', value=False)
|
|
color_aug.change(
|
|
color_aug_changed,
|
|
inputs=[color_aug],
|
|
outputs=[cache_latent_input],
|
|
)
|
|
with gr.Row():
|
|
resume = gr.Textbox(
|
|
label='Resume from saved training state',
|
|
placeholder='path to "last-state" state folder to resume from',
|
|
)
|
|
resume_button = gr.Button('📂', elem_id='open_folder_small')
|
|
resume_button.click(get_folder_path, outputs=resume)
|
|
prior_loss_weight = gr.Number(
|
|
label='Prior loss weight', value=1.0
|
|
)
|
|
with gr.Tab('Tools'):
|
|
gr.Markdown(
|
|
'This section provide Dreambooth tools to help setup your dataset...'
|
|
)
|
|
gradio_dreambooth_folder_creation_tab(
|
|
train_data_dir_input=train_data_dir_input,
|
|
reg_data_dir_input=reg_data_dir_input,
|
|
output_dir_input=output_dir_input,
|
|
logging_dir_input=logging_dir_input,
|
|
)
|
|
gradio_dataset_balancing_tab()
|
|
|
|
button_run = gr.Button('Train model')
|
|
|
|
settings_list = [
|
|
pretrained_model_name_or_path_input,
|
|
v2_input,
|
|
v_parameterization_input,
|
|
logging_dir_input,
|
|
train_data_dir_input,
|
|
reg_data_dir_input,
|
|
output_dir_input,
|
|
max_resolution_input,
|
|
# learning_rate_input,
|
|
lr_scheduler_input,
|
|
lr_warmup_input,
|
|
train_batch_size_input,
|
|
epoch_input,
|
|
save_every_n_epochs_input,
|
|
mixed_precision_input,
|
|
save_precision_input,
|
|
seed_input,
|
|
num_cpu_threads_per_process_input,
|
|
cache_latent_input,
|
|
caption_extention_input,
|
|
enable_bucket_input,
|
|
gradient_checkpointing_input,
|
|
full_fp16_input,
|
|
no_token_padding_input,
|
|
stop_text_encoder_training_input,
|
|
use_8bit_adam_input,
|
|
xformers_input,
|
|
save_model_as_dropdown,
|
|
shuffle_caption,
|
|
save_state,
|
|
resume,
|
|
prior_loss_weight,
|
|
text_encoder_lr,
|
|
unet_lr,
|
|
network_dim,
|
|
lora_network_weights,
|
|
color_aug,
|
|
flip_aug,
|
|
]
|
|
|
|
button_open_config.click(
|
|
open_configuration,
|
|
inputs=[config_file_name] + settings_list,
|
|
outputs=[config_file_name] + settings_list,
|
|
)
|
|
|
|
button_save_config.click(
|
|
save_configuration,
|
|
inputs=[dummy_db_false, config_file_name] + settings_list,
|
|
outputs=[config_file_name],
|
|
)
|
|
|
|
button_save_as_config.click(
|
|
save_configuration,
|
|
inputs=[dummy_db_true, config_file_name] + settings_list,
|
|
outputs=[config_file_name],
|
|
)
|
|
|
|
button_run.click(
|
|
train_model,
|
|
inputs=settings_list,
|
|
)
|
|
|
|
return (
|
|
train_data_dir_input,
|
|
reg_data_dir_input,
|
|
output_dir_input,
|
|
logging_dir_input,
|
|
)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# torch.cuda.set_per_process_memory_fraction(0.48)
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
'--username', type=str, default='', help='Username for authentication'
|
|
)
|
|
parser.add_argument(
|
|
'--password', type=str, default='', help='Password for authentication'
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
UI(username=args.username, password=args.password)
|