7b5639cff5
This is a massive WIP and should not be trusted or used right now. However, major milestones have been crossed. Both message boxes and file dialogs are now properly subprocessed and work on macOS. I think by extension, it may work on runpod environments as well, but that remains to be tested.
249 lines
9.1 KiB
Python
249 lines
9.1 KiB
Python
import os
|
||
import shutil
|
||
import subprocess
|
||
|
||
import gradio as gr
|
||
|
||
from .common_gui import get_folder_path, get_file_path
|
||
|
||
folder_symbol = '\U0001f4c2' # 📂
|
||
refresh_symbol = '\U0001f504' # 🔄
|
||
save_style_symbol = '\U0001f4be' # 💾
|
||
document_symbol = '\U0001F4C4' # 📄
|
||
PYTHON = 'python3' if os.name == 'posix' else './venv/Scripts/python.exe'
|
||
|
||
|
||
def convert_model(
|
||
source_model_input,
|
||
source_model_type,
|
||
target_model_folder_input,
|
||
target_model_name_input,
|
||
target_model_type,
|
||
target_save_precision_type,
|
||
):
|
||
# Check for caption_text_input
|
||
if source_model_type == '':
|
||
show_message_box('Invalid source model type')
|
||
return
|
||
|
||
# Check if source model exist
|
||
if os.path.isfile(source_model_input):
|
||
print('The provided source model is a file')
|
||
elif os.path.isdir(source_model_input):
|
||
print('The provided model is a folder')
|
||
else:
|
||
show_message_box('The provided source model is neither a file nor a folder')
|
||
return
|
||
|
||
# Check if source model exist
|
||
if os.path.isdir(target_model_folder_input):
|
||
print('The provided model folder exist')
|
||
else:
|
||
show_message_box('The provided target folder does not exist')
|
||
return
|
||
|
||
run_cmd = f'{PYTHON} "tools/convert_diffusers20_original_sd.py"'
|
||
|
||
v1_models = [
|
||
'runwayml/stable-diffusion-v1-5',
|
||
'CompVis/stable-diffusion-v1-4',
|
||
]
|
||
|
||
# check if v1 models
|
||
if str(source_model_type) in v1_models:
|
||
print('SD v1 model specified. Setting --v1 parameter')
|
||
run_cmd += ' --v1'
|
||
else:
|
||
print('SD v2 model specified. Setting --v2 parameter')
|
||
run_cmd += ' --v2'
|
||
|
||
if not target_save_precision_type == 'unspecified':
|
||
run_cmd += f' --{target_save_precision_type}'
|
||
|
||
if (
|
||
target_model_type == 'diffuser'
|
||
or target_model_type == 'diffuser_safetensors'
|
||
):
|
||
run_cmd += f' --reference_model="{source_model_type}"'
|
||
|
||
if target_model_type == 'diffuser_safetensors':
|
||
run_cmd += ' --use_safetensors'
|
||
|
||
run_cmd += f' "{source_model_input}"'
|
||
|
||
if (
|
||
target_model_type == 'diffuser'
|
||
or target_model_type == 'diffuser_safetensors'
|
||
):
|
||
target_model_path = os.path.join(
|
||
target_model_folder_input, target_model_name_input
|
||
)
|
||
run_cmd += f' "{target_model_path}"'
|
||
else:
|
||
target_model_path = os.path.join(
|
||
target_model_folder_input,
|
||
f'{target_model_name_input}.{target_model_type}',
|
||
)
|
||
run_cmd += f' "{target_model_path}"'
|
||
|
||
print(run_cmd)
|
||
|
||
# Run the command
|
||
if os.name == 'posix':
|
||
os.system(run_cmd)
|
||
else:
|
||
subprocess.run(run_cmd)
|
||
|
||
if (
|
||
not target_model_type == 'diffuser'
|
||
or target_model_type == 'diffuser_safetensors'
|
||
):
|
||
|
||
v2_models = [
|
||
'stabilityai/stable-diffusion-2-1-base',
|
||
'stabilityai/stable-diffusion-2-base',
|
||
]
|
||
v_parameterization = [
|
||
'stabilityai/stable-diffusion-2-1',
|
||
'stabilityai/stable-diffusion-2',
|
||
]
|
||
|
||
if str(source_model_type) in v2_models:
|
||
inference_file = os.path.join(
|
||
target_model_folder_input, f'{target_model_name_input}.yaml'
|
||
)
|
||
print(f'Saving v2-inference.yaml as {inference_file}')
|
||
shutil.copy(
|
||
f'./v2_inference/v2-inference.yaml',
|
||
f'{inference_file}',
|
||
)
|
||
|
||
if str(source_model_type) in v_parameterization:
|
||
inference_file = os.path.join(
|
||
target_model_folder_input, f'{target_model_name_input}.yaml'
|
||
)
|
||
print(f'Saving v2-inference-v.yaml as {inference_file}')
|
||
shutil.copy(
|
||
f'./v2_inference/v2-inference-v.yaml',
|
||
f'{inference_file}',
|
||
)
|
||
|
||
|
||
# parser = argparse.ArgumentParser()
|
||
# parser.add_argument("--v1", action='store_true',
|
||
# help='load v1.x model (v1 or v2 is required to load checkpoint) / 1.xのモデルを読み込む')
|
||
# parser.add_argument("--v2", action='store_true',
|
||
# help='load v2.0 model (v1 or v2 is required to load checkpoint) / 2.0のモデルを読み込む')
|
||
# parser.add_argument("--fp16", action='store_true',
|
||
# help='load as fp16 (Diffusers only) and save as fp16 (checkpoint only) / fp16形式で読み込み(Diffusers形式のみ対応)、保存する(checkpointのみ対応)')
|
||
# parser.add_argument("--bf16", action='store_true', help='save as bf16 (checkpoint only) / bf16形式で保存する(checkpointのみ対応)')
|
||
# parser.add_argument("--float", action='store_true',
|
||
# help='save as float (checkpoint only) / float(float32)形式で保存する(checkpointのみ対応)')
|
||
# parser.add_argument("--epoch", type=int, default=0, help='epoch to write to checkpoint / checkpointに記録するepoch数の値')
|
||
# parser.add_argument("--global_step", type=int, default=0,
|
||
# help='global_step to write to checkpoint / checkpointに記録するglobal_stepの値')
|
||
# parser.add_argument("--reference_model", type=str, default=None,
|
||
# help="reference model for schduler/tokenizer, required in saving Diffusers, copy schduler/tokenizer from this / scheduler/tokenizerのコピー元のDiffusersモデル、Diffusers形式で保存するときに必要")
|
||
|
||
# parser.add_argument("model_to_load", type=str, default=None,
|
||
# help="model to load: checkpoint file or Diffusers model's directory / 読み込むモデル、checkpointかDiffusers形式モデルのディレクトリ")
|
||
# parser.add_argument("model_to_save", type=str, default=None,
|
||
# help="model to save: checkpoint (with extension) or Diffusers model's directory (without extension) / 変換後のモデル、拡張子がある場合はcheckpoint、ない場合はDiffusesモデルとして保存")
|
||
|
||
|
||
###
|
||
# Gradio UI
|
||
###
|
||
|
||
|
||
def gradio_convert_model_tab():
|
||
with gr.Tab('Convert model'):
|
||
gr.Markdown(
|
||
'This utility can be used to convert from one stable diffusion model format to another.'
|
||
)
|
||
with gr.Row():
|
||
source_model_input = gr.Textbox(
|
||
label='Source model',
|
||
placeholder='path to source model folder of file to convert...',
|
||
interactive=True,
|
||
)
|
||
button_source_model_dir = gr.Button(
|
||
folder_symbol, elem_id='open_folder_small'
|
||
)
|
||
button_source_model_dir.click(
|
||
get_folder_path,
|
||
outputs=source_model_input,
|
||
show_progress=False,
|
||
)
|
||
|
||
button_source_model_file = gr.Button(
|
||
document_symbol, elem_id='open_folder_small'
|
||
)
|
||
button_source_model_file.click(
|
||
get_file_path,
|
||
inputs=[source_model_input],
|
||
outputs=source_model_input,
|
||
show_progress=False,
|
||
)
|
||
|
||
source_model_type = gr.Dropdown(
|
||
label='Source model type',
|
||
choices=[
|
||
'stabilityai/stable-diffusion-2-1-base',
|
||
'stabilityai/stable-diffusion-2-base',
|
||
'stabilityai/stable-diffusion-2-1',
|
||
'stabilityai/stable-diffusion-2',
|
||
'runwayml/stable-diffusion-v1-5',
|
||
'CompVis/stable-diffusion-v1-4',
|
||
],
|
||
)
|
||
with gr.Row():
|
||
target_model_folder_input = gr.Textbox(
|
||
label='Target model folder',
|
||
placeholder='path to target model folder of file name to create...',
|
||
interactive=True,
|
||
)
|
||
button_target_model_folder = gr.Button(
|
||
folder_symbol, elem_id='open_folder_small'
|
||
)
|
||
button_target_model_folder.click(
|
||
get_folder_path,
|
||
outputs=target_model_folder_input,
|
||
show_progress=False,
|
||
)
|
||
|
||
target_model_name_input = gr.Textbox(
|
||
label='Target model name',
|
||
placeholder='target model name...',
|
||
interactive=True,
|
||
)
|
||
target_model_type = gr.Dropdown(
|
||
label='Target model type',
|
||
choices=[
|
||
'diffuser',
|
||
'diffuser_safetensors',
|
||
'ckpt',
|
||
'safetensors',
|
||
],
|
||
)
|
||
target_save_precision_type = gr.Dropdown(
|
||
label='Target model precision',
|
||
choices=['unspecified', 'fp16', 'bf16', 'float'],
|
||
value='unspecified',
|
||
)
|
||
|
||
convert_button = gr.Button('Convert model')
|
||
|
||
convert_button.click(
|
||
convert_model,
|
||
inputs=[
|
||
source_model_input,
|
||
source_model_type,
|
||
target_model_folder_input,
|
||
target_model_name_input,
|
||
target_model_type,
|
||
target_save_precision_type,
|
||
],
|
||
show_progress=False,
|
||
)
|