202a416251
Add example powershell code
154 lines
5.6 KiB
PowerShell
154 lines
5.6 KiB
PowerShell
# This powershell script will create a model using the fine tuning dreambooth method. It will require landscape,
|
|
# portrait and square images.
|
|
#
|
|
# Adjust the script to your own needs
|
|
|
|
# Sylvia Ritter
|
|
# variable values
|
|
$pretrained_model_name_or_path = "D:\models\v1-5-pruned-mse-vae.ckpt"
|
|
$train_dir = "D:\dreambooth\train_sylvia_ritter\raw_data"
|
|
|
|
$landscape_image_num = 4
|
|
$portrait_image_num = 25
|
|
$square_image_num = 2
|
|
|
|
$learning_rate = 1e-6
|
|
$dataset_repeats = 120
|
|
$train_batch_size = 4
|
|
$epoch = 1
|
|
$save_every_n_epochs=1
|
|
$mixed_precision="fp16"
|
|
$num_cpu_threads_per_process=6
|
|
|
|
$landscape_folder_name = "landscape-pp"
|
|
$landscape_resolution = "832,512"
|
|
$portrait_folder_name = "portrait-pp"
|
|
$portrait_resolution = "448,896"
|
|
$square_folder_name = "square-pp"
|
|
$square_resolution = "512,512"
|
|
|
|
# You should not have to change values past this point
|
|
|
|
$landscape_data_dir = $train_dir + "\" + $landscape_folder_name
|
|
$portrait_data_dir = $train_dir + "\" + $portrait_folder_name
|
|
$square_data_dir = $train_dir + "\" + $square_folder_name
|
|
$landscape_output_dir = $train_dir + "\model-l"
|
|
$portrait_output_dir = $train_dir + "\model-lp"
|
|
$square_output_dir = $train_dir + "\model-lps"
|
|
|
|
$landscape_repeats = $landscape_image_num * $dataset_repeats
|
|
$portrait_repeats = $portrait_image_num * $dataset_repeats
|
|
$square_repeats = $square_image_num * $dataset_repeats
|
|
|
|
$landscape_mts = [Math]::Ceiling($landscape_repeats / $train_batch_size * $epoch)
|
|
$portrait_mts = [Math]::Ceiling($portrait_repeats / $train_batch_size * $epoch)
|
|
$square_mts = [Math]::Ceiling($square_repeats / $train_batch_size * $epoch)
|
|
|
|
# Write-Output $landscape_repeats
|
|
|
|
.\venv\Scripts\activate
|
|
|
|
accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed-ber.py `
|
|
--pretrained_model_name_or_path=$pretrained_model_name_or_path `
|
|
--train_data_dir=$landscape_data_dir `
|
|
--output_dir=$landscape_output_dir `
|
|
--resolution=$landscape_resolution `
|
|
--train_batch_size=$train_batch_size `
|
|
--learning_rate=$learning_rate `
|
|
--max_train_steps=$landscape_mts `
|
|
--use_8bit_adam `
|
|
--xformers `
|
|
--mixed_precision=$mixed_precision `
|
|
--cache_latents `
|
|
--save_every_n_epochs=$save_every_n_epochs `
|
|
--fine_tuning `
|
|
--dataset_repeats=$dataset_repeats `
|
|
--save_half
|
|
|
|
accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed-ber.py `
|
|
--pretrained_model_name_or_path=$landscape_output_dir"\last.ckpt" `
|
|
--train_data_dir=$portrait_data_dir `
|
|
--output_dir=$portrait_output_dir `
|
|
--resolution=$portrait_resolution `
|
|
--train_batch_size=$train_batch_size `
|
|
--learning_rate=$learning_rate `
|
|
--max_train_steps=$portrait_mts `
|
|
--use_8bit_adam `
|
|
--xformers `
|
|
--mixed_precision=$mixed_precision `
|
|
--cache_latents `
|
|
--save_every_n_epochs=$save_every_n_epochs `
|
|
--fine_tuning `
|
|
--dataset_repeats=$dataset_repeats `
|
|
--save_half
|
|
|
|
accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed-ber.py `
|
|
--pretrained_model_name_or_path=$portrait_output_dir"\last.ckpt" `
|
|
--train_data_dir=$square_data_dir `
|
|
--output_dir=$square_output_dir `
|
|
--resolution=$square_resolution `
|
|
--train_batch_size=$train_batch_size `
|
|
--learning_rate=$learning_rate `
|
|
--max_train_steps=$square_mts `
|
|
--use_8bit_adam `
|
|
--xformers `
|
|
--mixed_precision=$mixed_precision `
|
|
--cache_latents `
|
|
--save_every_n_epochs=$save_every_n_epochs `
|
|
--fine_tuning `
|
|
--dataset_repeats=$dataset_repeats `
|
|
--save_half
|
|
|
|
# 2nd pass at half the dataset repeat value
|
|
|
|
accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed-ber.py `
|
|
--pretrained_model_name_or_path=$square_output_dir"\last.ckpt" `
|
|
--train_data_dir=$landscape_data_dir `
|
|
--output_dir=$landscape_output_dir"2" `
|
|
--resolution=$landscape_resolution `
|
|
--train_batch_size=$train_batch_size `
|
|
--learning_rate=$learning_rate `
|
|
--max_train_steps=$([Math]::Ceiling($landscape_mts/2)) `
|
|
--use_8bit_adam `
|
|
--xformers `
|
|
--mixed_precision=$mixed_precision `
|
|
--cache_latents `
|
|
--save_every_n_epochs=$save_every_n_epochs `
|
|
--fine_tuning `
|
|
--dataset_repeats=$([Math]::Ceiling($dataset_repeats/2)) `
|
|
--save_half
|
|
|
|
accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed-ber.py `
|
|
--pretrained_model_name_or_path=$landscape_output_dir"2\last.ckpt" `
|
|
--train_data_dir=$portrait_data_dir `
|
|
--output_dir=$portrait_output_dir"2" `
|
|
--resolution=$portrait_resolution `
|
|
--train_batch_size=$train_batch_size `
|
|
--learning_rate=$learning_rate `
|
|
--max_train_steps=$([Math]::Ceiling($portrait_mts/2)) `
|
|
--use_8bit_adam `
|
|
--xformers `
|
|
--mixed_precision=$mixed_precision `
|
|
--cache_latents `
|
|
--save_every_n_epochs=$save_every_n_epochs `
|
|
--fine_tuning `
|
|
--dataset_repeats=$([Math]::Ceiling($dataset_repeats/2)) `
|
|
--save_half
|
|
|
|
accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed-ber.py `
|
|
--pretrained_model_name_or_path=$portrait_output_dir"2\last.ckpt" `
|
|
--train_data_dir=$square_data_dir `
|
|
--output_dir=$square_output_dir"2" `
|
|
--resolution=$square_resolution `
|
|
--train_batch_size=$train_batch_size `
|
|
--learning_rate=$learning_rate `
|
|
--max_train_steps=$([Math]::Ceiling($square_mts/2)) `
|
|
--use_8bit_adam `
|
|
--xformers `
|
|
--mixed_precision=$mixed_precision `
|
|
--cache_latents `
|
|
--save_every_n_epochs=$save_every_n_epochs `
|
|
--fine_tuning `
|
|
--dataset_repeats=$([Math]::Ceiling($dataset_repeats/2)) `
|
|
--save_half
|
|
|