540 lines
24 KiB
Python
540 lines
24 KiB
Python
from diffusers.optimization import SchedulerType, TYPE_TO_SCHEDULER_FUNCTION
|
||
from torch.optim import Optimizer
|
||
from typing import Optional, Union
|
||
import importlib
|
||
import argparse
|
||
import gc
|
||
import math
|
||
import os
|
||
import random
|
||
import time
|
||
import json
|
||
|
||
from tqdm import tqdm
|
||
import torch
|
||
from accelerate.utils import set_seed
|
||
import diffusers
|
||
from diffusers import DDPMScheduler
|
||
|
||
import library.train_util as train_util
|
||
from library.train_util import DreamBoothDataset, FineTuningDataset
|
||
|
||
|
||
def collate_fn(examples):
|
||
return examples[0]
|
||
|
||
|
||
def generate_step_logs(args: argparse.Namespace, current_loss, avr_loss, lr_scheduler):
|
||
logs = {"loss/current": current_loss, "loss/average": avr_loss}
|
||
|
||
if args.network_train_unet_only:
|
||
logs["lr/unet"] = lr_scheduler.get_last_lr()[0]
|
||
elif args.network_train_text_encoder_only:
|
||
logs["lr/textencoder"] = lr_scheduler.get_last_lr()[0]
|
||
else:
|
||
logs["lr/textencoder"] = lr_scheduler.get_last_lr()[0]
|
||
logs["lr/unet"] = lr_scheduler.get_last_lr()[-1] # may be same to textencoder
|
||
|
||
return logs
|
||
|
||
|
||
# Monkeypatch newer get_scheduler() function overridng current version of diffusers.optimizer.get_scheduler
|
||
# code is taken from https://github.com/huggingface/diffusers diffusers.optimizer, commit d87cc15977b87160c30abaace3894e802ad9e1e6
|
||
# Which is a newer release of diffusers than currently packaged with sd-scripts
|
||
# This code can be removed when newer diffusers version (v0.12.1 or greater) is tested and implemented to sd-scripts
|
||
|
||
|
||
def get_scheduler_fix(
|
||
name: Union[str, SchedulerType],
|
||
optimizer: Optimizer,
|
||
num_warmup_steps: Optional[int] = None,
|
||
num_training_steps: Optional[int] = None,
|
||
num_cycles: int = 1,
|
||
power: float = 1.0,
|
||
):
|
||
"""
|
||
Unified API to get any scheduler from its name.
|
||
Args:
|
||
name (`str` or `SchedulerType`):
|
||
The name of the scheduler to use.
|
||
optimizer (`torch.optim.Optimizer`):
|
||
The optimizer that will be used during training.
|
||
num_warmup_steps (`int`, *optional*):
|
||
The number of warmup steps to do. This is not required by all schedulers (hence the argument being
|
||
optional), the function will raise an error if it's unset and the scheduler type requires it.
|
||
num_training_steps (`int``, *optional*):
|
||
The number of training steps to do. This is not required by all schedulers (hence the argument being
|
||
optional), the function will raise an error if it's unset and the scheduler type requires it.
|
||
num_cycles (`int`, *optional*):
|
||
The number of hard restarts used in `COSINE_WITH_RESTARTS` scheduler.
|
||
power (`float`, *optional*, defaults to 1.0):
|
||
Power factor. See `POLYNOMIAL` scheduler
|
||
last_epoch (`int`, *optional*, defaults to -1):
|
||
The index of the last epoch when resuming training.
|
||
"""
|
||
name = SchedulerType(name)
|
||
schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name]
|
||
if name == SchedulerType.CONSTANT:
|
||
return schedule_func(optimizer)
|
||
|
||
# All other schedulers require `num_warmup_steps`
|
||
if num_warmup_steps is None:
|
||
raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.")
|
||
|
||
if name == SchedulerType.CONSTANT_WITH_WARMUP:
|
||
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps)
|
||
|
||
# All other schedulers require `num_training_steps`
|
||
if num_training_steps is None:
|
||
raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.")
|
||
|
||
if name == SchedulerType.COSINE_WITH_RESTARTS:
|
||
return schedule_func(
|
||
optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, num_cycles=num_cycles
|
||
)
|
||
|
||
if name == SchedulerType.POLYNOMIAL:
|
||
return schedule_func(
|
||
optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, power=power
|
||
)
|
||
|
||
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps)
|
||
|
||
|
||
def train(args):
|
||
session_id = random.randint(0, 2**32)
|
||
training_started_at = time.time()
|
||
train_util.verify_training_args(args)
|
||
train_util.prepare_dataset_args(args, True)
|
||
|
||
cache_latents = args.cache_latents
|
||
use_dreambooth_method = args.in_json is None
|
||
|
||
if args.seed is not None:
|
||
set_seed(args.seed)
|
||
|
||
tokenizer = train_util.load_tokenizer(args)
|
||
|
||
# データセットを準備する
|
||
if use_dreambooth_method:
|
||
print("Use DreamBooth method.")
|
||
train_dataset = DreamBoothDataset(args.train_batch_size, args.train_data_dir, args.reg_data_dir,
|
||
tokenizer, args.max_token_length, args.caption_extension, args.shuffle_caption, args.keep_tokens,
|
||
args.resolution, args.enable_bucket, args.min_bucket_reso, args.max_bucket_reso, args.prior_loss_weight,
|
||
args.flip_aug, args.color_aug, args.face_crop_aug_range, args.random_crop, args.debug_dataset)
|
||
else:
|
||
print("Train with captions.")
|
||
train_dataset = FineTuningDataset(args.in_json, args.train_batch_size, args.train_data_dir,
|
||
tokenizer, args.max_token_length, args.shuffle_caption, args.keep_tokens,
|
||
args.resolution, args.enable_bucket, args.min_bucket_reso, args.max_bucket_reso,
|
||
args.flip_aug, args.color_aug, args.face_crop_aug_range, args.random_crop,
|
||
args.dataset_repeats, args.debug_dataset)
|
||
train_dataset.make_buckets()
|
||
|
||
if args.debug_dataset:
|
||
train_util.debug_dataset(train_dataset)
|
||
return
|
||
if len(train_dataset) == 0:
|
||
print("No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してください(train_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります)")
|
||
return
|
||
|
||
# acceleratorを準備する
|
||
print("prepare accelerator")
|
||
accelerator, unwrap_model = train_util.prepare_accelerator(args)
|
||
|
||
# mixed precisionに対応した型を用意しておき適宜castする
|
||
weight_dtype, save_dtype = train_util.prepare_dtype(args)
|
||
|
||
# モデルを読み込む
|
||
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype)
|
||
|
||
# モデルに xformers とか memory efficient attention を組み込む
|
||
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
|
||
|
||
# 学習を準備する
|
||
if cache_latents:
|
||
vae.to(accelerator.device, dtype=weight_dtype)
|
||
vae.requires_grad_(False)
|
||
vae.eval()
|
||
with torch.no_grad():
|
||
train_dataset.cache_latents(vae)
|
||
vae.to("cpu")
|
||
if torch.cuda.is_available():
|
||
torch.cuda.empty_cache()
|
||
gc.collect()
|
||
|
||
# prepare network
|
||
print("import network module:", args.network_module)
|
||
network_module = importlib.import_module(args.network_module)
|
||
|
||
net_kwargs = {}
|
||
if args.network_args is not None:
|
||
for net_arg in args.network_args:
|
||
key, value = net_arg.split('=')
|
||
net_kwargs[key] = value
|
||
|
||
# if a new network is added in future, add if ~ then blocks for each network (;'∀')
|
||
network = network_module.create_network(1.0, args.network_dim, args.network_alpha, vae, text_encoder, unet, **net_kwargs)
|
||
if network is None:
|
||
return
|
||
|
||
if args.network_weights is not None:
|
||
print("load network weights from:", args.network_weights)
|
||
network.load_weights(args.network_weights)
|
||
|
||
train_unet = not args.network_train_text_encoder_only
|
||
train_text_encoder = not args.network_train_unet_only
|
||
network.apply_to(text_encoder, unet, train_text_encoder, train_unet)
|
||
|
||
if args.gradient_checkpointing:
|
||
unet.enable_gradient_checkpointing()
|
||
text_encoder.gradient_checkpointing_enable()
|
||
network.enable_gradient_checkpointing() # may have no effect
|
||
|
||
# 学習に必要なクラスを準備する
|
||
print("prepare optimizer, data loader etc.")
|
||
|
||
# 8-bit Adamを使う
|
||
if args.use_8bit_adam:
|
||
try:
|
||
import bitsandbytes as bnb
|
||
except ImportError:
|
||
raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです")
|
||
print("use 8-bit Adam optimizer")
|
||
optimizer_class = bnb.optim.AdamW8bit
|
||
else:
|
||
optimizer_class = torch.optim.AdamW
|
||
|
||
trainable_params = network.prepare_optimizer_params(args.text_encoder_lr, args.unet_lr)
|
||
|
||
# betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略
|
||
optimizer = optimizer_class(trainable_params, lr=args.learning_rate)
|
||
|
||
# dataloaderを準備する
|
||
# DataLoaderのプロセス数:0はメインプロセスになる
|
||
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで
|
||
train_dataloader = torch.utils.data.DataLoader(
|
||
train_dataset, batch_size=1, shuffle=False, collate_fn=collate_fn, num_workers=n_workers)
|
||
|
||
# 学習ステップ数を計算する
|
||
if args.max_train_epochs is not None:
|
||
args.max_train_steps = args.max_train_epochs * len(train_dataloader)
|
||
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
|
||
|
||
# lr schedulerを用意する
|
||
# lr_scheduler = diffusers.optimization.get_scheduler(
|
||
lr_scheduler = get_scheduler_fix(
|
||
args.lr_scheduler, optimizer, num_warmup_steps=args.lr_warmup_steps,
|
||
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
|
||
num_cycles=args.lr_scheduler_num_cycles, power=args.lr_scheduler_power)
|
||
|
||
# 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする
|
||
if args.full_fp16:
|
||
assert args.mixed_precision == "fp16", "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
|
||
print("enable full fp16 training.")
|
||
network.to(weight_dtype)
|
||
|
||
# acceleratorがなんかよろしくやってくれるらしい
|
||
if train_unet and train_text_encoder:
|
||
unet, text_encoder, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||
unet, text_encoder, network, optimizer, train_dataloader, lr_scheduler)
|
||
elif train_unet:
|
||
unet, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||
unet, network, optimizer, train_dataloader, lr_scheduler)
|
||
elif train_text_encoder:
|
||
text_encoder, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||
text_encoder, network, optimizer, train_dataloader, lr_scheduler)
|
||
else:
|
||
network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||
network, optimizer, train_dataloader, lr_scheduler)
|
||
|
||
unet.requires_grad_(False)
|
||
unet.to(accelerator.device, dtype=weight_dtype)
|
||
text_encoder.requires_grad_(False)
|
||
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
||
if args.gradient_checkpointing: # according to TI example in Diffusers, train is required
|
||
unet.train()
|
||
text_encoder.train()
|
||
|
||
# set top parameter requires_grad = True for gradient checkpointing works
|
||
text_encoder.text_model.embeddings.requires_grad_(True)
|
||
else:
|
||
unet.eval()
|
||
text_encoder.eval()
|
||
|
||
network.prepare_grad_etc(text_encoder, unet)
|
||
|
||
if not cache_latents:
|
||
vae.requires_grad_(False)
|
||
vae.eval()
|
||
vae.to(accelerator.device, dtype=weight_dtype)
|
||
|
||
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
|
||
if args.full_fp16:
|
||
train_util.patch_accelerator_for_fp16_training(accelerator)
|
||
|
||
# resumeする
|
||
if args.resume is not None:
|
||
print(f"resume training from state: {args.resume}")
|
||
accelerator.load_state(args.resume)
|
||
|
||
# epoch数を計算する
|
||
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
||
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
||
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
|
||
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
|
||
|
||
# 学習する
|
||
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
||
print("running training / 学習開始")
|
||
print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset.num_train_images}")
|
||
print(f" num reg images / 正則化画像の数: {train_dataset.num_reg_images}")
|
||
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
|
||
print(f" num epochs / epoch数: {num_train_epochs}")
|
||
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
|
||
print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
|
||
print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
|
||
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
|
||
|
||
metadata = {
|
||
"ss_session_id": session_id, # random integer indicating which group of epochs the model came from
|
||
"ss_training_started_at": training_started_at, # unix timestamp
|
||
"ss_output_name": args.output_name,
|
||
"ss_learning_rate": args.learning_rate,
|
||
"ss_text_encoder_lr": args.text_encoder_lr,
|
||
"ss_unet_lr": args.unet_lr,
|
||
"ss_num_train_images": train_dataset.num_train_images, # includes repeating
|
||
"ss_num_reg_images": train_dataset.num_reg_images,
|
||
"ss_num_batches_per_epoch": len(train_dataloader),
|
||
"ss_num_epochs": num_train_epochs,
|
||
"ss_batch_size_per_device": args.train_batch_size,
|
||
"ss_total_batch_size": total_batch_size,
|
||
"ss_gradient_checkpointing": args.gradient_checkpointing,
|
||
"ss_gradient_accumulation_steps": args.gradient_accumulation_steps,
|
||
"ss_max_train_steps": args.max_train_steps,
|
||
"ss_lr_warmup_steps": args.lr_warmup_steps,
|
||
"ss_lr_scheduler": args.lr_scheduler,
|
||
"ss_network_module": args.network_module,
|
||
"ss_network_dim": args.network_dim, # None means default because another network than LoRA may have another default dim
|
||
"ss_network_alpha": args.network_alpha, # some networks may not use this value
|
||
"ss_mixed_precision": args.mixed_precision,
|
||
"ss_full_fp16": bool(args.full_fp16),
|
||
"ss_v2": bool(args.v2),
|
||
"ss_resolution": args.resolution,
|
||
"ss_clip_skip": args.clip_skip,
|
||
"ss_max_token_length": args.max_token_length,
|
||
"ss_color_aug": bool(args.color_aug),
|
||
"ss_flip_aug": bool(args.flip_aug),
|
||
"ss_random_crop": bool(args.random_crop),
|
||
"ss_shuffle_caption": bool(args.shuffle_caption),
|
||
"ss_cache_latents": bool(args.cache_latents),
|
||
"ss_enable_bucket": bool(train_dataset.enable_bucket),
|
||
"ss_min_bucket_reso": train_dataset.min_bucket_reso,
|
||
"ss_max_bucket_reso": train_dataset.max_bucket_reso,
|
||
"ss_seed": args.seed,
|
||
"ss_keep_tokens": args.keep_tokens,
|
||
"ss_dataset_dirs": json.dumps(train_dataset.dataset_dirs_info),
|
||
"ss_reg_dataset_dirs": json.dumps(train_dataset.reg_dataset_dirs_info),
|
||
"ss_tag_frequency": json.dumps(train_dataset.tag_frequency),
|
||
"ss_bucket_info": json.dumps(train_dataset.bucket_info),
|
||
"ss_training_comment": args.training_comment # will not be updated after training
|
||
}
|
||
|
||
# uncomment if another network is added
|
||
# for key, value in net_kwargs.items():
|
||
# metadata["ss_arg_" + key] = value
|
||
|
||
if args.pretrained_model_name_or_path is not None:
|
||
sd_model_name = args.pretrained_model_name_or_path
|
||
if os.path.exists(sd_model_name):
|
||
metadata["ss_sd_model_hash"] = train_util.model_hash(sd_model_name)
|
||
metadata["ss_new_sd_model_hash"] = train_util.calculate_sha256(sd_model_name)
|
||
sd_model_name = os.path.basename(sd_model_name)
|
||
metadata["ss_sd_model_name"] = sd_model_name
|
||
|
||
if args.vae is not None:
|
||
vae_name = args.vae
|
||
if os.path.exists(vae_name):
|
||
metadata["ss_vae_hash"] = train_util.model_hash(vae_name)
|
||
metadata["ss_new_vae_hash"] = train_util.calculate_sha256(vae_name)
|
||
vae_name = os.path.basename(vae_name)
|
||
metadata["ss_vae_name"] = vae_name
|
||
|
||
metadata = {k: str(v) for k, v in metadata.items()}
|
||
|
||
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
|
||
global_step = 0
|
||
|
||
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
|
||
num_train_timesteps=1000, clip_sample=False)
|
||
|
||
if accelerator.is_main_process:
|
||
accelerator.init_trackers("network_train")
|
||
|
||
for epoch in range(num_train_epochs):
|
||
print(f"epoch {epoch+1}/{num_train_epochs}")
|
||
metadata["ss_epoch"] = str(epoch+1)
|
||
|
||
network.on_epoch_start(text_encoder, unet)
|
||
|
||
loss_total = 0
|
||
for step, batch in enumerate(train_dataloader):
|
||
with accelerator.accumulate(network):
|
||
with torch.no_grad():
|
||
if "latents" in batch and batch["latents"] is not None:
|
||
latents = batch["latents"].to(accelerator.device)
|
||
else:
|
||
# latentに変換
|
||
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
|
||
latents = latents * 0.18215
|
||
b_size = latents.shape[0]
|
||
|
||
with torch.set_grad_enabled(train_text_encoder):
|
||
# Get the text embedding for conditioning
|
||
input_ids = batch["input_ids"].to(accelerator.device)
|
||
encoder_hidden_states = train_util.get_hidden_states(args, input_ids, tokenizer, text_encoder, weight_dtype)
|
||
|
||
# Sample noise that we'll add to the latents
|
||
noise = torch.randn_like(latents, device=latents.device)
|
||
|
||
# Sample a random timestep for each image
|
||
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
|
||
timesteps = timesteps.long()
|
||
|
||
# Add noise to the latents according to the noise magnitude at each timestep
|
||
# (this is the forward diffusion process)
|
||
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
||
|
||
# Predict the noise residual
|
||
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
||
|
||
if args.v_parameterization:
|
||
# v-parameterization training
|
||
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
||
else:
|
||
target = noise
|
||
|
||
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
|
||
loss = loss.mean([1, 2, 3])
|
||
|
||
loss_weights = batch["loss_weights"] # 各sampleごとのweight
|
||
loss = loss * loss_weights
|
||
|
||
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
|
||
|
||
accelerator.backward(loss)
|
||
if accelerator.sync_gradients:
|
||
params_to_clip = network.get_trainable_params()
|
||
accelerator.clip_grad_norm_(params_to_clip, 1.0) # args.max_grad_norm)
|
||
|
||
optimizer.step()
|
||
lr_scheduler.step()
|
||
optimizer.zero_grad(set_to_none=True)
|
||
|
||
# Checks if the accelerator has performed an optimization step behind the scenes
|
||
if accelerator.sync_gradients:
|
||
progress_bar.update(1)
|
||
global_step += 1
|
||
|
||
current_loss = loss.detach().item()
|
||
loss_total += current_loss
|
||
avr_loss = loss_total / (step+1)
|
||
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
|
||
progress_bar.set_postfix(**logs)
|
||
|
||
if args.logging_dir is not None:
|
||
logs = generate_step_logs(args, current_loss, avr_loss, lr_scheduler)
|
||
accelerator.log(logs, step=global_step)
|
||
|
||
if global_step >= args.max_train_steps:
|
||
break
|
||
|
||
if args.logging_dir is not None:
|
||
logs = {"loss/epoch": loss_total / len(train_dataloader)}
|
||
accelerator.log(logs, step=epoch+1)
|
||
|
||
accelerator.wait_for_everyone()
|
||
|
||
if args.save_every_n_epochs is not None:
|
||
model_name = train_util.DEFAULT_EPOCH_NAME if args.output_name is None else args.output_name
|
||
|
||
def save_func():
|
||
ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, epoch + 1) + '.' + args.save_model_as
|
||
ckpt_file = os.path.join(args.output_dir, ckpt_name)
|
||
print(f"saving checkpoint: {ckpt_file}")
|
||
unwrap_model(network).save_weights(ckpt_file, save_dtype, None if args.no_metadata else metadata)
|
||
|
||
def remove_old_func(old_epoch_no):
|
||
old_ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, old_epoch_no) + '.' + args.save_model_as
|
||
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
|
||
if os.path.exists(old_ckpt_file):
|
||
print(f"removing old checkpoint: {old_ckpt_file}")
|
||
os.remove(old_ckpt_file)
|
||
|
||
saving = train_util.save_on_epoch_end(args, save_func, remove_old_func, epoch + 1, num_train_epochs)
|
||
if saving and args.save_state:
|
||
train_util.save_state_on_epoch_end(args, accelerator, model_name, epoch + 1)
|
||
|
||
# end of epoch
|
||
|
||
metadata["ss_epoch"] = str(num_train_epochs)
|
||
|
||
is_main_process = accelerator.is_main_process
|
||
if is_main_process:
|
||
network = unwrap_model(network)
|
||
|
||
accelerator.end_training()
|
||
|
||
if args.save_state:
|
||
train_util.save_state_on_train_end(args, accelerator)
|
||
|
||
del accelerator # この後メモリを使うのでこれは消す
|
||
|
||
if is_main_process:
|
||
os.makedirs(args.output_dir, exist_ok=True)
|
||
|
||
model_name = train_util.DEFAULT_LAST_OUTPUT_NAME if args.output_name is None else args.output_name
|
||
ckpt_name = model_name + '.' + args.save_model_as
|
||
ckpt_file = os.path.join(args.output_dir, ckpt_name)
|
||
|
||
print(f"save trained model to {ckpt_file}")
|
||
network.save_weights(ckpt_file, save_dtype, None if args.no_metadata else metadata)
|
||
print("model saved.")
|
||
|
||
|
||
if __name__ == '__main__':
|
||
parser = argparse.ArgumentParser()
|
||
|
||
train_util.add_sd_models_arguments(parser)
|
||
train_util.add_dataset_arguments(parser, True, True)
|
||
train_util.add_training_arguments(parser, True)
|
||
|
||
parser.add_argument("--no_metadata", action='store_true', help="do not save metadata in output model / メタデータを出力先モデルに保存しない")
|
||
parser.add_argument("--save_model_as", type=str, default="safetensors", choices=[None, "ckpt", "pt", "safetensors"],
|
||
help="format to save the model (default is .safetensors) / モデル保存時の形式(デフォルトはsafetensors)")
|
||
|
||
parser.add_argument("--unet_lr", type=float, default=None, help="learning rate for U-Net / U-Netの学習率")
|
||
parser.add_argument("--text_encoder_lr", type=float, default=None, help="learning rate for Text Encoder / Text Encoderの学習率")
|
||
parser.add_argument("--lr_scheduler_num_cycles", type=int, default=1,
|
||
help="Number of restarts for cosine scheduler with restarts / cosine with restartsスケジューラでのリスタート回数")
|
||
parser.add_argument("--lr_scheduler_power", type=float, default=1,
|
||
help="Polynomial power for polynomial scheduler / polynomialスケジューラでのpolynomial power")
|
||
|
||
parser.add_argument("--network_weights", type=str, default=None,
|
||
help="pretrained weights for network / 学習するネットワークの初期重み")
|
||
parser.add_argument("--network_module", type=str, default=None, help='network module to train / 学習対象のネットワークのモジュール')
|
||
parser.add_argument("--network_dim", type=int, default=None,
|
||
help='network dimensions (depends on each network) / モジュールの次元数(ネットワークにより定義は異なります)')
|
||
parser.add_argument("--network_alpha", type=float, default=1,
|
||
help='alpha for LoRA weight scaling, default 1 (same as network_dim for same behavior as old version) / LoRaの重み調整のalpha値、デフォルト1(旧バージョンと同じ動作をするにはnetwork_dimと同じ値を指定)')
|
||
parser.add_argument("--network_args", type=str, default=None, nargs='*',
|
||
help='additional argmuments for network (key=value) / ネットワークへの追加の引数')
|
||
parser.add_argument("--network_train_unet_only", action="store_true", help="only training U-Net part / U-Net関連部分のみ学習する")
|
||
parser.add_argument("--network_train_text_encoder_only", action="store_true",
|
||
help="only training Text Encoder part / Text Encoder関連部分のみ学習する")
|
||
parser.add_argument("--training_comment", type=str, default=None,
|
||
help="arbitrary comment string stored in metadata / メタデータに記録する任意のコメント文字列")
|
||
|
||
args = parser.parse_args()
|
||
train(args)
|