KohyaSS/library/train_util.py
2023-01-19 15:47:43 -05:00

1396 lines
62 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# common functions for training
import argparse
import json
import shutil
import time
from typing import NamedTuple
from accelerate import Accelerator
from torch.autograd.function import Function
import glob
import math
import os
import random
from tqdm import tqdm
import torch
from torchvision import transforms
from transformers import CLIPTokenizer
import diffusers
from diffusers import DDPMScheduler, StableDiffusionPipeline
import albumentations as albu
import numpy as np
from PIL import Image
import cv2
from einops import rearrange
from torch import einsum
import library.model_util as model_util
# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
V2_STABLE_DIFFUSION_PATH = "stabilityai/stable-diffusion-2" # ここからtokenizerだけ使う v2とv2.1はtokenizer仕様は同じ
# checkpointファイル名
EPOCH_STATE_NAME = "{}-{:06d}-state"
EPOCH_FILE_NAME = "{}-{:06d}"
EPOCH_DIFFUSERS_DIR_NAME = "{}-{:06d}"
LAST_STATE_NAME = "{}-state"
DEFAULT_EPOCH_NAME = "epoch"
DEFAULT_LAST_OUTPUT_NAME = "last"
# region dataset
IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", ".webp", ".bmp"]
class ImageInfo():
def __init__(self, image_key: str, num_repeats: int, caption: str, is_reg: bool, absolute_path: str) -> None:
self.image_key: str = image_key
self.num_repeats: int = num_repeats
self.caption: str = caption
self.is_reg: bool = is_reg
self.absolute_path: str = absolute_path
self.image_size: tuple[int, int] = None
self.bucket_reso: tuple[int, int] = None
self.latents: torch.Tensor = None
self.latents_flipped: torch.Tensor = None
self.latents_npz: str = None
self.latents_npz_flipped: str = None
class BucketBatchIndex(NamedTuple):
bucket_index: int
batch_index: int
class BaseDataset(torch.utils.data.Dataset):
def __init__(self, tokenizer, max_token_length, shuffle_caption, shuffle_keep_tokens, resolution, flip_aug: bool, color_aug: bool, face_crop_aug_range, random_crop, debug_dataset: bool) -> None:
super().__init__()
self.tokenizer: CLIPTokenizer = tokenizer
self.max_token_length = max_token_length
self.shuffle_caption = shuffle_caption
self.shuffle_keep_tokens = shuffle_keep_tokens
# width/height is used when enable_bucket==False
self.width, self.height = (None, None) if resolution is None else resolution
self.face_crop_aug_range = face_crop_aug_range
self.flip_aug = flip_aug
self.color_aug = color_aug
self.debug_dataset = debug_dataset
self.random_crop = random_crop
self.token_padding_disabled = False
self.tokenizer_max_length = self.tokenizer.model_max_length if max_token_length is None else max_token_length + 2
# augmentation
flip_p = 0.5 if flip_aug else 0.0
if color_aug:
# わりと弱めの色合いaugmentationbrightness/contrastあたりは画像のpixel valueの最大値・最小値を変えてしまうのでよくないのではという想定でgamma/hueあたりを触る
self.aug = albu.Compose([
albu.OneOf([
albu.HueSaturationValue(8, 0, 0, p=.5),
albu.RandomGamma((95, 105), p=.5),
], p=.33),
albu.HorizontalFlip(p=flip_p)
], p=1.)
elif flip_aug:
self.aug = albu.Compose([
albu.HorizontalFlip(p=flip_p)
], p=1.)
else:
self.aug = None
self.image_transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ])
self.image_data: dict[str, ImageInfo] = {}
def disable_token_padding(self):
self.token_padding_disabled = True
def process_caption(self, caption):
if self.shuffle_caption:
tokens = caption.strip().split(",")
if self.shuffle_keep_tokens is None:
random.shuffle(tokens)
else:
if len(tokens) > self.shuffle_keep_tokens:
keep_tokens = tokens[:self.shuffle_keep_tokens]
tokens = tokens[self.shuffle_keep_tokens:]
random.shuffle(tokens)
tokens = keep_tokens + tokens
caption = ",".join(tokens).strip()
return caption
def get_input_ids(self, caption):
input_ids = self.tokenizer(caption, padding="max_length", truncation=True,
max_length=self.tokenizer_max_length, return_tensors="pt").input_ids
if self.tokenizer_max_length > self.tokenizer.model_max_length:
input_ids = input_ids.squeeze(0)
iids_list = []
if self.tokenizer.pad_token_id == self.tokenizer.eos_token_id:
# v1
# 77以上の時は "<BOS> .... <EOS> <EOS> <EOS>" でトータル227とかになっているので、"<BOS>...<EOS>"の三連に変換する
# 1111氏のやつは , で区切る、とかしているようだが とりあえず単純に
for i in range(1, self.tokenizer_max_length - self.tokenizer.model_max_length + 2, self.tokenizer.model_max_length - 2): # (1, 152, 75)
ids_chunk = (input_ids[0].unsqueeze(0),
input_ids[i:i + self.tokenizer.model_max_length - 2],
input_ids[-1].unsqueeze(0))
ids_chunk = torch.cat(ids_chunk)
iids_list.append(ids_chunk)
else:
# v2
# 77以上の時は "<BOS> .... <EOS> <PAD> <PAD>..." でトータル227とかになっているので、"<BOS>...<EOS> <PAD> <PAD> ..."の三連に変換する
for i in range(1, self.tokenizer_max_length - self.tokenizer.model_max_length + 2, self.tokenizer.model_max_length - 2):
ids_chunk = (input_ids[0].unsqueeze(0), # BOS
input_ids[i:i + self.tokenizer.model_max_length - 2],
input_ids[-1].unsqueeze(0)) # PAD or EOS
ids_chunk = torch.cat(ids_chunk)
# 末尾が <EOS> <PAD> または <PAD> <PAD> の場合は、何もしなくてよい
# 末尾が x <PAD/EOS> の場合は末尾を <EOS> に変えるx <EOS> なら結果的に変化なし)
if ids_chunk[-2] != self.tokenizer.eos_token_id and ids_chunk[-2] != self.tokenizer.pad_token_id:
ids_chunk[-1] = self.tokenizer.eos_token_id
# 先頭が <BOS> <PAD> ... の場合は <BOS> <EOS> <PAD> ... に変える
if ids_chunk[1] == self.tokenizer.pad_token_id:
ids_chunk[1] = self.tokenizer.eos_token_id
iids_list.append(ids_chunk)
input_ids = torch.stack(iids_list) # 3,77
return input_ids
def register_image(self, info: ImageInfo):
self.image_data[info.image_key] = info
def make_buckets(self):
'''
bucketingを行わない場合も呼び出し必須ひとつだけbucketを作る
min_size and max_size are ignored when enable_bucket is False
'''
print("loading image sizes.")
for info in tqdm(self.image_data.values()):
if info.image_size is None:
info.image_size = self.get_image_size(info.absolute_path)
if self.enable_bucket:
print("make buckets")
else:
print("prepare dataset")
bucket_resos = self.bucket_resos
bucket_aspect_ratios = np.array(self.bucket_aspect_ratios)
# bucketを作成する
if self.enable_bucket:
img_ar_errors = []
for image_info in self.image_data.values():
# bucketを決める
image_width, image_height = image_info.image_size
aspect_ratio = image_width / image_height
ar_errors = bucket_aspect_ratios - aspect_ratio
bucket_id = np.abs(ar_errors).argmin()
image_info.bucket_reso = bucket_resos[bucket_id]
ar_error = ar_errors[bucket_id]
img_ar_errors.append(ar_error)
else:
for image_info in self.image_data.values():
image_info.bucket_reso = bucket_resos[0] # bucket_resos contains (width, height) only
# 画像をbucketに分割する
self.buckets: list[str] = [[] for _ in range(len(bucket_resos))]
reso_to_index = {}
for i, reso in enumerate(bucket_resos):
reso_to_index[reso] = i
for image_info in self.image_data.values():
bucket_index = reso_to_index[image_info.bucket_reso]
for _ in range(image_info.num_repeats):
self.buckets[bucket_index].append(image_info.image_key)
if self.enable_bucket:
print("number of images (including repeats) / 各bucketの画像枚数繰り返し回数を含む")
for i, (reso, img_keys) in enumerate(zip(bucket_resos, self.buckets)):
print(f"bucket {i}: resolution {reso}, count: {len(img_keys)}")
img_ar_errors = np.array(img_ar_errors)
print(f"mean ar error (without repeats): {np.mean(np.abs(img_ar_errors))}")
# 参照用indexを作る
self.buckets_indices: list(BucketBatchIndex) = []
for bucket_index, bucket in enumerate(self.buckets):
batch_count = int(math.ceil(len(bucket) / self.batch_size))
for batch_index in range(batch_count):
self.buckets_indices.append(BucketBatchIndex(bucket_index, batch_index))
self.shuffle_buckets()
self._length = len(self.buckets_indices)
def shuffle_buckets(self):
random.shuffle(self.buckets_indices)
for bucket in self.buckets:
random.shuffle(bucket)
def load_image(self, image_path):
image = Image.open(image_path)
if not image.mode == "RGB":
image = image.convert("RGB")
img = np.array(image, np.uint8)
return img
def resize_and_trim(self, image, reso):
image_height, image_width = image.shape[0:2]
ar_img = image_width / image_height
ar_reso = reso[0] / reso[1]
if ar_img > ar_reso: # 横が長い→縦を合わせる
scale = reso[1] / image_height
else:
scale = reso[0] / image_width
resized_size = (int(image_width * scale + .5), int(image_height * scale + .5))
image = cv2.resize(image, resized_size, interpolation=cv2.INTER_AREA) # INTER_AREAでやりたいのでcv2でリサイズ
if resized_size[0] > reso[0]:
trim_size = resized_size[0] - reso[0]
image = image[:, trim_size//2:trim_size//2 + reso[0]]
elif resized_size[1] > reso[1]:
trim_size = resized_size[1] - reso[1]
image = image[trim_size//2:trim_size//2 + reso[1]]
assert image.shape[0] == reso[1] and image.shape[1] == reso[0], \
f"internal error, illegal trimmed size: {image.shape}, {reso}"
return image
def cache_latents(self, vae):
print("caching latents.")
for info in tqdm(self.image_data.values()):
if info.latents_npz is not None:
info.latents = self.load_latents_from_npz(info, False)
info.latents = torch.FloatTensor(info.latents)
info.latents_flipped = self.load_latents_from_npz(info, True) # might be None
if info.latents_flipped is not None:
info.latents_flipped = torch.FloatTensor(info.latents_flipped)
continue
image = self.load_image(info.absolute_path)
image = self.resize_and_trim(image, info.bucket_reso)
img_tensor = self.image_transforms(image)
img_tensor = img_tensor.unsqueeze(0).to(device=vae.device, dtype=vae.dtype)
info.latents = vae.encode(img_tensor).latent_dist.sample().squeeze(0).to("cpu")
if self.flip_aug:
image = image[:, ::-1].copy() # cannot convert to Tensor without copy
img_tensor = self.image_transforms(image)
img_tensor = img_tensor.unsqueeze(0).to(device=vae.device, dtype=vae.dtype)
info.latents_flipped = vae.encode(img_tensor).latent_dist.sample().squeeze(0).to("cpu")
def get_image_size(self, image_path):
image = Image.open(image_path)
return image.size
def load_image_with_face_info(self, image_path: str):
img = self.load_image(image_path)
face_cx = face_cy = face_w = face_h = 0
if self.face_crop_aug_range is not None:
tokens = os.path.splitext(os.path.basename(image_path))[0].split('_')
if len(tokens) >= 5:
face_cx = int(tokens[-4])
face_cy = int(tokens[-3])
face_w = int(tokens[-2])
face_h = int(tokens[-1])
return img, face_cx, face_cy, face_w, face_h
# いい感じに切り出す
def crop_target(self, image, face_cx, face_cy, face_w, face_h):
height, width = image.shape[0:2]
if height == self.height and width == self.width:
return image
# 画像サイズはsizeより大きいのでリサイズする
face_size = max(face_w, face_h)
min_scale = max(self.height / height, self.width / width) # 画像がモデル入力サイズぴったりになる倍率(最小の倍率)
min_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[1]))) # 指定した顔最小サイズ
max_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[0]))) # 指定した顔最大サイズ
if min_scale >= max_scale: # range指定がmin==max
scale = min_scale
else:
scale = random.uniform(min_scale, max_scale)
nh = int(height * scale + .5)
nw = int(width * scale + .5)
assert nh >= self.height and nw >= self.width, f"internal error. small scale {scale}, {width}*{height}"
image = cv2.resize(image, (nw, nh), interpolation=cv2.INTER_AREA)
face_cx = int(face_cx * scale + .5)
face_cy = int(face_cy * scale + .5)
height, width = nh, nw
# 顔を中心として448*640とかへ切り出す
for axis, (target_size, length, face_p) in enumerate(zip((self.height, self.width), (height, width), (face_cy, face_cx))):
p1 = face_p - target_size // 2 # 顔を中心に持ってくるための切り出し位置
if self.random_crop:
# 背景も含めるために顔を中心に置く確率を高めつつずらす
range = max(length - face_p, face_p) # 画像の端から顔中心までの距離の長いほう
p1 = p1 + (random.randint(0, range) + random.randint(0, range)) - range # -range ~ +range までのいい感じの乱数
else:
# range指定があるときのみ、すこしだけランダムにわりと適当
if self.face_crop_aug_range[0] != self.face_crop_aug_range[1]:
if face_size > self.size // 10 and face_size >= 40:
p1 = p1 + random.randint(-face_size // 20, +face_size // 20)
p1 = max(0, min(p1, length - target_size))
if axis == 0:
image = image[p1:p1 + target_size, :]
else:
image = image[:, p1:p1 + target_size]
return image
def load_latents_from_npz(self, image_info: ImageInfo, flipped):
npz_file = image_info.latents_npz_flipped if flipped else image_info.latents_npz
if npz_file is None:
return None
return np.load(npz_file)['arr_0']
def __len__(self):
return self._length
def __getitem__(self, index):
if index == 0:
self.shuffle_buckets()
bucket = self.buckets[self.buckets_indices[index].bucket_index]
image_index = self.buckets_indices[index].batch_index * self.batch_size
loss_weights = []
captions = []
input_ids_list = []
latents_list = []
images = []
for image_key in bucket[image_index:image_index + self.batch_size]:
image_info = self.image_data[image_key]
loss_weights.append(self.prior_loss_weight if image_info.is_reg else 1.0)
# image/latentsを処理する
if image_info.latents is not None:
latents = image_info.latents if not self.flip_aug or random.random() < .5 else image_info.latents_flipped
image = None
elif image_info.latents_npz is not None:
latents = self.load_latents_from_npz(image_info, self.flip_aug and random.random() >= .5)
latents = torch.FloatTensor(latents)
image = None
else:
# 画像を読み込み、必要ならcropする
img, face_cx, face_cy, face_w, face_h = self.load_image_with_face_info(image_info.absolute_path)
im_h, im_w = img.shape[0:2]
if self.enable_bucket:
img = self.resize_and_trim(img, image_info.bucket_reso)
else:
if face_cx > 0: # 顔位置情報あり
img = self.crop_target(img, face_cx, face_cy, face_w, face_h)
elif im_h > self.height or im_w > self.width:
assert self.random_crop, f"image too large, but cropping and bucketing are disabled / 画像サイズが大きいのでface_crop_aug_rangeかrandom_crop、またはbucketを有効にしてください: {image_info.absolute_path}"
if im_h > self.height:
p = random.randint(0, im_h - self.height)
img = img[p:p + self.height]
if im_w > self.width:
p = random.randint(0, im_w - self.width)
img = img[:, p:p + self.width]
im_h, im_w = img.shape[0:2]
assert im_h == self.height and im_w == self.width, f"image size is small / 画像サイズが小さいようです: {image_info.absolute_path}"
# augmentation
if self.aug is not None:
img = self.aug(image=img)['image']
latents = None
image = self.image_transforms(img) # -1.0~1.0のtorch.Tensorになる
images.append(image)
latents_list.append(latents)
caption = self.process_caption(image_info.caption)
captions.append(caption)
if not self.token_padding_disabled: # this option might be omitted in future
input_ids_list.append(self.get_input_ids(caption))
example = {}
example['loss_weights'] = torch.FloatTensor(loss_weights)
if self.token_padding_disabled:
# padding=True means pad in the batch
example['input_ids'] = self.tokenizer(captions, padding=True, truncation=True, return_tensors="pt").input_ids
else:
# batch processing seems to be good
example['input_ids'] = torch.stack(input_ids_list)
if images[0] is not None:
images = torch.stack(images)
images = images.to(memory_format=torch.contiguous_format).float()
else:
images = None
example['images'] = images
example['latents'] = torch.stack(latents_list) if latents_list[0] is not None else None
if self.debug_dataset:
example['image_keys'] = bucket[image_index:image_index + self.batch_size]
example['captions'] = captions
return example
class DreamBoothDataset(BaseDataset):
def __init__(self, batch_size, train_data_dir, reg_data_dir, tokenizer, max_token_length, caption_extension, shuffle_caption, shuffle_keep_tokens, resolution, enable_bucket, min_bucket_reso, max_bucket_reso, prior_loss_weight, flip_aug, color_aug, face_crop_aug_range, random_crop, debug_dataset) -> None:
super().__init__(tokenizer, max_token_length, shuffle_caption, shuffle_keep_tokens,
resolution, flip_aug, color_aug, face_crop_aug_range, random_crop, debug_dataset)
assert resolution is not None, f"resolution is required / resolution解像度指定は必須です"
self.batch_size = batch_size
self.size = min(self.width, self.height) # 短いほう
self.prior_loss_weight = prior_loss_weight
self.latents_cache = None
self.enable_bucket = enable_bucket
if self.enable_bucket:
assert min(resolution) >= min_bucket_reso, f"min_bucket_reso must be equal or less than resolution / min_bucket_resoは最小解像度より大きくできません。解像度を大きくするかmin_bucket_resoを小さくしてください"
assert max(resolution) <= max_bucket_reso, f"max_bucket_reso must be equal or greater than resolution / max_bucket_resoは最大解像度より小さくできません。解像度を小さくするかmin_bucket_resoを大きくしてください"
self.bucket_resos, self.bucket_aspect_ratios = model_util.make_bucket_resolutions(
(self.width, self.height), min_bucket_reso, max_bucket_reso)
else:
self.bucket_resos = [(self.width, self.height)]
self.bucket_aspect_ratios = [self.width / self.height]
def read_caption(img_path):
# captionの候補ファイル名を作る
base_name = os.path.splitext(img_path)[0]
base_name_face_det = base_name
tokens = base_name.split("_")
if len(tokens) >= 5:
base_name_face_det = "_".join(tokens[:-4])
cap_paths = [base_name + caption_extension, base_name_face_det + caption_extension]
caption = None
for cap_path in cap_paths:
if os.path.isfile(cap_path):
with open(cap_path, "rt", encoding='utf-8') as f:
try:
lines = f.readlines()
except UnicodeDecodeError as e:
print(f"illegal char in file (not UTF-8) / ファイルにUTF-8以外の文字があります: {cap_path}")
raise e
assert len(lines) > 0, f"caption file is empty / キャプションファイルが空です: {cap_path}"
caption = lines[0].strip()
break
return caption
def load_dreambooth_dir(dir):
if not os.path.isdir(dir):
# print(f"ignore file: {dir}")
return 0, [], []
tokens = os.path.basename(dir).split('_')
try:
n_repeats = int(tokens[0])
except ValueError as e:
print(f"ignore directory without repeats / 繰り返し回数のないディレクトリを無視します: {dir}")
return 0, [], []
caption_by_folder = '_'.join(tokens[1:])
img_paths = glob_images(dir, "*")
print(f"found directory {n_repeats}_{caption_by_folder} contains {len(img_paths)} image files")
# 画像ファイルごとにプロンプトを読み込み、もしあればそちらを使う
captions = []
for img_path in img_paths:
cap_for_img = read_caption(img_path)
captions.append(caption_by_folder if cap_for_img is None else cap_for_img)
return n_repeats, img_paths, captions
print("prepare train images.")
train_dirs = os.listdir(train_data_dir)
num_train_images = 0
for dir in train_dirs:
n_repeats, img_paths, captions = load_dreambooth_dir(os.path.join(train_data_dir, dir))
num_train_images += n_repeats * len(img_paths)
for img_path, caption in zip(img_paths, captions):
info = ImageInfo(img_path, n_repeats, caption, False, img_path)
self.register_image(info)
print(f"{num_train_images} train images with repeating.")
self.num_train_images = num_train_images
# reg imageは数を数えて学習画像と同じ枚数にする
num_reg_images = 0
if reg_data_dir:
print("prepare reg images.")
reg_infos: list[ImageInfo] = []
reg_dirs = os.listdir(reg_data_dir)
for dir in reg_dirs:
n_repeats, img_paths, captions = load_dreambooth_dir(os.path.join(reg_data_dir, dir))
num_reg_images += n_repeats * len(img_paths)
for img_path, caption in zip(img_paths, captions):
info = ImageInfo(img_path, n_repeats, caption, True, img_path)
reg_infos.append(info)
print(f"{num_reg_images} reg images.")
if num_train_images < num_reg_images:
print("some of reg images are not used / 正則化画像の数が多いので、一部使用されない正則化画像があります")
if num_reg_images == 0:
print("no regularization images / 正則化画像が見つかりませんでした")
else:
# num_repeatsを計算するどうせ大した数ではないのでループで処理する
n = 0
first_loop = True
while n < num_train_images:
for info in reg_infos:
if first_loop:
self.register_image(info)
n += info.num_repeats
else:
info.num_repeats += 1
n += 1
if n >= num_train_images:
break
first_loop = False
self.num_reg_images = num_reg_images
class FineTuningDataset(BaseDataset):
def __init__(self, json_file_name, batch_size, train_data_dir, tokenizer, max_token_length, shuffle_caption, shuffle_keep_tokens, resolution, enable_bucket, min_bucket_reso, max_bucket_reso, flip_aug, color_aug, face_crop_aug_range, random_crop, dataset_repeats, debug_dataset) -> None:
super().__init__(tokenizer, max_token_length, shuffle_caption, shuffle_keep_tokens,
resolution, flip_aug, color_aug, face_crop_aug_range, random_crop, debug_dataset)
# メタデータを読み込む
if os.path.exists(json_file_name):
print(f"loading existing metadata: {json_file_name}")
with open(json_file_name, "rt", encoding='utf-8') as f:
metadata = json.load(f)
else:
raise ValueError(f"no metadata / メタデータファイルがありません: {json_file_name}")
self.metadata = metadata
self.train_data_dir = train_data_dir
self.batch_size = batch_size
for image_key, img_md in metadata.items():
# path情報を作る
if os.path.exists(image_key):
abs_path = image_key
else:
# わりといい加減だがいい方法が思いつかん
abs_path = glob_images(train_data_dir, image_key)
assert len(abs_path) >= 1, f"no image / 画像がありません: {abs_path}"
abs_path = abs_path[0]
caption = img_md.get('caption')
tags = img_md.get('tags')
if caption is None:
caption = tags
elif tags is not None and len(tags) > 0:
caption = caption + ', ' + tags
assert caption is not None and len(caption) > 0, f"caption or tag is required / キャプションまたはタグは必須です:{abs_path}"
image_info = ImageInfo(image_key, dataset_repeats, caption, False, abs_path)
image_info.image_size = img_md.get('train_resolution')
if not self.color_aug:
# if npz exists, use them
image_info.latents_npz, image_info.latents_npz_flipped = self.image_key_to_npz_file(image_key)
self.register_image(image_info)
self.num_train_images = len(metadata) * dataset_repeats
self.num_reg_images = 0
# check existence of all npz files
if not self.color_aug:
npz_any = False
npz_all = True
for image_info in self.image_data.values():
has_npz = image_info.latents_npz is not None
npz_any = npz_any or has_npz
if self.flip_aug:
has_npz = has_npz and image_info.latents_npz_flipped is not None
npz_all = npz_all and has_npz
if npz_any and not npz_all:
break
if not npz_any:
print(f"npz file does not exist. make latents with VAE / npzファイルが見つからないためVAEを使ってlatentsを取得します")
elif not npz_all:
print(f"some of npz file does not exist. ignore npz files / いくつかのnpzファイルが見つからないためnpzファイルを無視します")
for image_info in self.image_data.values():
image_info.latents_npz = image_info.latents_npz_flipped = None
# check min/max bucket size
sizes = set()
resos = set()
for image_info in self.image_data.values():
if image_info.image_size is None:
sizes = None # not calculated
break
sizes.add(image_info.image_size[0])
sizes.add(image_info.image_size[1])
resos.add(tuple(image_info.image_size))
if sizes is None:
assert resolution is not None, "if metadata doesn't have bucket info, resolution is required / メタデータにbucket情報がない場合はresolutionを指定してください"
self.enable_bucket = enable_bucket
if self.enable_bucket:
assert min(resolution) >= min_bucket_reso, f"min_bucket_reso must be equal or less than resolution / min_bucket_resoは最小解像度より大きくできません。解像度を大きくするかmin_bucket_resoを小さくしてください"
assert max(resolution) <= max_bucket_reso, f"max_bucket_reso must be equal or greater than resolution / max_bucket_resoは最大解像度より小さくできません。解像度を小さくするかmin_bucket_resoを大きくしてください"
self.bucket_resos, self.bucket_aspect_ratios = model_util.make_bucket_resolutions(
(self.width, self.height), min_bucket_reso, max_bucket_reso)
else:
self.bucket_resos = [(self.width, self.height)]
self.bucket_aspect_ratios = [self.width / self.height]
else:
if not enable_bucket:
print("metadata has bucket info, enable bucketing / メタデータにbucket情報があるためbucketを有効にします")
print("using bucket info in metadata / メタデータ内のbucket情報を使います")
self.enable_bucket = True
self.bucket_resos = list(resos)
self.bucket_resos.sort()
self.bucket_aspect_ratios = [w / h for w, h in self.bucket_resos]
def image_key_to_npz_file(self, image_key):
base_name = os.path.splitext(image_key)[0]
npz_file_norm = base_name + '.npz'
if os.path.exists(npz_file_norm):
# image_key is full path
npz_file_flip = base_name + '_flip.npz'
if not os.path.exists(npz_file_flip):
npz_file_flip = None
return npz_file_norm, npz_file_flip
# image_key is relative path
npz_file_norm = os.path.join(self.train_data_dir, image_key + '.npz')
npz_file_flip = os.path.join(self.train_data_dir, image_key + '_flip.npz')
if not os.path.exists(npz_file_norm):
npz_file_norm = None
npz_file_flip = None
elif not os.path.exists(npz_file_flip):
npz_file_flip = None
return npz_file_norm, npz_file_flip
def debug_dataset(train_dataset):
print(f"Total dataset length (steps) / データセットの長さ(ステップ数): {len(train_dataset)}")
print("Escape for exit. / Escキーで中断、終了します")
k = 0
for example in train_dataset:
if example['latents'] is not None:
print("sample has latents from npz file")
for j, (ik, cap, lw) in enumerate(zip(example['image_keys'], example['captions'], example['loss_weights'])):
print(f'{ik}, size: {train_dataset.image_data[ik].image_size}, caption: "{cap}", loss weight: {lw}')
if example['images'] is not None:
im = example['images'][j]
im = ((im.numpy() + 1.0) * 127.5).astype(np.uint8)
im = np.transpose(im, (1, 2, 0)) # c,H,W -> H,W,c
im = im[:, :, ::-1] # RGB -> BGR (OpenCV)
cv2.imshow("img", im)
k = cv2.waitKey()
cv2.destroyAllWindows()
if k == 27:
break
if k == 27 or example['images'] is None:
break
def glob_images(dir, base):
img_paths = []
for ext in IMAGE_EXTENSIONS:
if base == '*':
img_paths.extend(glob.glob(os.path.join(glob.escape(dir), base + ext)))
else:
img_paths.extend(glob.glob(glob.escape(os.path.join(dir, base + ext))))
return img_paths
# endregion
# region モジュール入れ替え部
"""
高速化のためのモジュール入れ替え
"""
# FlashAttentionを使うCrossAttention
# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py
# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE
# constants
EPSILON = 1e-6
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def model_hash(filename):
try:
with open(filename, "rb") as file:
import hashlib
m = hashlib.sha256()
file.seek(0x100000)
m.update(file.read(0x10000))
return m.hexdigest()[0:8]
except FileNotFoundError:
return 'NOFILE'
# flash attention forwards and backwards
# https://arxiv.org/abs/2205.14135
class FlashAttentionFunction(torch.autograd.function.Function):
@ staticmethod
@ torch.no_grad()
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
""" Algorithm 2 in the paper """
device = q.device
dtype = q.dtype
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
o = torch.zeros_like(q)
all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device)
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device)
scale = (q.shape[-1] ** -0.5)
if not exists(mask):
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
else:
mask = rearrange(mask, 'b n -> b 1 1 n')
mask = mask.split(q_bucket_size, dim=-1)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
mask,
all_row_sums.split(q_bucket_size, dim=-2),
all_row_maxes.split(q_bucket_size, dim=-2),
)
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
if exists(row_mask):
attn_weights.masked_fill_(~row_mask, max_neg_value)
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
device=device).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
attn_weights -= block_row_maxes
exp_weights = torch.exp(attn_weights)
if exists(row_mask):
exp_weights.masked_fill_(~row_mask, 0.)
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON)
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc)
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values)
row_maxes.copy_(new_row_maxes)
row_sums.copy_(new_row_sums)
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)
return o
@ staticmethod
@ torch.no_grad()
def backward(ctx, do):
""" Algorithm 4 in the paper """
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
q, k, v, o, l, m = ctx.saved_tensors
device = q.device
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
dq = torch.zeros_like(q)
dk = torch.zeros_like(k)
dv = torch.zeros_like(v)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
do.split(q_bucket_size, dim=-2),
mask,
l.split(q_bucket_size, dim=-2),
m.split(q_bucket_size, dim=-2),
dq.split(q_bucket_size, dim=-2)
)
for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
dk.split(k_bucket_size, dim=-2),
dv.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
device=device).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
exp_attn_weights = torch.exp(attn_weights - mc)
if exists(row_mask):
exp_attn_weights.masked_fill_(~row_mask, 0.)
p = exp_attn_weights / lc
dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc)
dp = einsum('... i d, ... j d -> ... i j', doc, vc)
D = (doc * oc).sum(dim=-1, keepdims=True)
ds = p * scale * (dp - D)
dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc)
dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc)
dqc.add_(dq_chunk)
dkc.add_(dk_chunk)
dvc.add_(dv_chunk)
return dq, dk, dv, None, None, None, None
def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers):
if mem_eff_attn:
replace_unet_cross_attn_to_memory_efficient()
elif xformers:
replace_unet_cross_attn_to_xformers()
def replace_unet_cross_attn_to_memory_efficient():
print("Replace CrossAttention.forward to use FlashAttention (not xformers)")
flash_func = FlashAttentionFunction
def forward_flash_attn(self, x, context=None, mask=None):
q_bucket_size = 512
k_bucket_size = 1024
h = self.heads
q = self.to_q(x)
context = context if context is not None else x
context = context.to(x.dtype)
if hasattr(self, 'hypernetwork') and self.hypernetwork is not None:
context_k, context_v = self.hypernetwork.forward(x, context)
context_k = context_k.to(x.dtype)
context_v = context_v.to(x.dtype)
else:
context_k = context
context_v = context
k = self.to_k(context_k)
v = self.to_v(context_v)
del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size)
out = rearrange(out, 'b h n d -> b n (h d)')
# diffusers 0.7.0~ わざわざ変えるなよ (;´Д`)
out = self.to_out[0](out)
out = self.to_out[1](out)
return out
diffusers.models.attention.CrossAttention.forward = forward_flash_attn
def replace_unet_cross_attn_to_xformers():
print("Replace CrossAttention.forward to use xformers")
try:
import xformers.ops
except ImportError:
raise ImportError("No xformers / xformersがインストールされていないようです")
def forward_xformers(self, x, context=None, mask=None):
h = self.heads
q_in = self.to_q(x)
context = default(context, x)
context = context.to(x.dtype)
if hasattr(self, 'hypernetwork') and self.hypernetwork is not None:
context_k, context_v = self.hypernetwork.forward(x, context)
context_k = context_k.to(x.dtype)
context_v = context_v.to(x.dtype)
else:
context_k = context
context_v = context
k_in = self.to_k(context_k)
v_in = self.to_v(context_v)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
q = q.contiguous()
k = k.contiguous()
v = v.contiguous()
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる
out = rearrange(out, 'b n h d -> b n (h d)', h=h)
# diffusers 0.7.0~
out = self.to_out[0](out)
out = self.to_out[1](out)
return out
diffusers.models.attention.CrossAttention.forward = forward_xformers
# endregion
# region arguments
def add_sd_models_arguments(parser: argparse.ArgumentParser):
# for pretrained models
parser.add_argument("--v2", action='store_true',
help='load Stable Diffusion v2.0 model / Stable Diffusion 2.0のモデルを読み込む')
parser.add_argument("--v_parameterization", action='store_true',
help='enable v-parameterization training / v-parameterization学習を有効にする')
parser.add_argument("--pretrained_model_name_or_path", type=str, default=None,
help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル")
def add_training_arguments(parser: argparse.ArgumentParser, support_dreambooth: bool):
parser.add_argument("--output_dir", type=str, default=None,
help="directory to output trained model / 学習後のモデル出力先ディレクトリ")
parser.add_argument("--output_name", type=str, default=None,
help="base name of trained model file / 学習後のモデルの拡張子を除くファイル名")
parser.add_argument("--save_precision", type=str, default=None,
choices=[None, "float", "fp16", "bf16"], help="precision in saving / 保存時に精度を変更して保存する")
parser.add_argument("--save_every_n_epochs", type=int, default=None,
help="save checkpoint every N epochs / 学習中のモデルを指定エポックごとに保存する")
parser.add_argument("--save_last_n_epochs", type=int, default=None, help="save last N checkpoints / 最大Nエポック保存する")
parser.add_argument("--save_last_n_epochs_state", type=int, default=None, help="save last N checkpoints of state (overrides the value of --save_last_n_epochs)/ 最大Nエポックstateを保存する(--save_last_n_epochsの指定を上書きします)")
parser.add_argument("--save_state", action="store_true",
help="save training state additionally (including optimizer states etc.) / optimizerなど学習状態も含めたstateを追加で保存する")
parser.add_argument("--resume", type=str, default=None, help="saved state to resume training / 学習再開するモデルのstate")
parser.add_argument("--train_batch_size", type=int, default=1, help="batch size for training / 学習時のバッチサイズ")
parser.add_argument("--max_token_length", type=int, default=None, choices=[None, 150, 225],
help="max token length of text encoder (default for 75, 150 or 225) / text encoderのトークンの最大長未指定で75、150または225が指定可")
parser.add_argument("--use_8bit_adam", action="store_true",
help="use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使うbitsandbytesのインストールが必要")
parser.add_argument("--mem_eff_attn", action="store_true",
help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う")
parser.add_argument("--xformers", action="store_true",
help="use xformers for CrossAttention / CrossAttentionにxformersを使う")
parser.add_argument("--vae", type=str, default=None,
help="path to checkpoint of vae to replace / VAEを入れ替える場合、VAEのcheckpointファイルまたはディレクトリ")
parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率")
parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数")
parser.add_argument("--max_train_epochs", type=int, default=None, help="training epochs (overrides max_train_steps) / 学習エポック数max_train_stepsを上書きします")
parser.add_argument("--max_data_loader_n_workers", type=int, default=8, help="max num workers for DataLoader (lower is less main RAM usage, faster epoch start and slower data loading) / DataLoaderの最大プロセス数小さい値ではメインメモリの使用量が減りエポック間の待ち時間が減りますが、データ読み込みは遅くなります")
parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed")
parser.add_argument("--gradient_checkpointing", action="store_true",
help="enable gradient checkpointing / grandient checkpointingを有効にする")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass / 学習時に逆伝播をする前に勾配を合計するステップ数")
parser.add_argument("--mixed_precision", type=str, default="no",
choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度")
parser.add_argument("--full_fp16", action="store_true", help="fp16 training including gradients / 勾配も含めてfp16で学習する")
parser.add_argument("--clip_skip", type=int, default=None,
help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いるnは1以上")
parser.add_argument("--logging_dir", type=str, default=None,
help="enable logging and output TensorBoard log to this directory / ログ出力を有効にしてこのディレクトリにTensorBoard用のログを出力する")
parser.add_argument("--log_prefix", type=str, default=None, help="add prefix for each log directory / ログディレクトリ名の先頭に追加する文字列")
parser.add_argument("--lr_scheduler", type=str, default="constant",
help="scheduler to use for learning rate / 学習率のスケジューラ: linear, cosine, cosine_with_restarts, polynomial, constant (default), constant_with_warmup")
parser.add_argument("--lr_warmup_steps", type=int, default=0,
help="Number of steps for the warmup in the lr scheduler (default is 0) / 学習率のスケジューラをウォームアップするステップ数デフォルト0")
if support_dreambooth:
# DreamBooth training
parser.add_argument("--prior_loss_weight", type=float, default=1.0,
help="loss weight for regularization images / 正則化画像のlossの重み")
def verify_training_args(args: argparse.Namespace):
if args.v_parameterization and not args.v2:
print("v_parameterization should be with v2 / v1でv_parameterizationを使用することは想定されていません")
if args.v2 and args.clip_skip is not None:
print("v2 with clip_skip will be unexpected / v2でclip_skipを使用することは想定されていません")
def add_dataset_arguments(parser: argparse.ArgumentParser, support_dreambooth: bool, support_caption: bool):
# dataset common
parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ")
parser.add_argument("--shuffle_caption", action="store_true",
help="shuffle comma-separated caption / コンマで区切られたcaptionの各要素をshuffleする")
parser.add_argument("--caption_extension", type=str, default=".caption", help="extension of caption files / 読み込むcaptionファイルの拡張子")
parser.add_argument("--caption_extention", type=str, default=None,
help="extension of caption files (backward compatibility) / 読み込むcaptionファイルの拡張子スペルミスを残してあります")
parser.add_argument("--keep_tokens", type=int, default=None,
help="keep heading N tokens when shuffling caption tokens / captionのシャッフル時に、先頭からこの個数のトークンをシャッフルしないで残す")
parser.add_argument("--color_aug", action="store_true", help="enable weak color augmentation / 学習時に色合いのaugmentationを有効にする")
parser.add_argument("--flip_aug", action="store_true", help="enable horizontal flip augmentation / 学習時に左右反転のaugmentationを有効にする")
parser.add_argument("--face_crop_aug_range", type=str, default=None,
help="enable face-centered crop augmentation and its range (e.g. 2.0,4.0) / 学習時に顔を中心とした切り出しaugmentationを有効にするときは倍率を指定する2.0,4.0")
parser.add_argument("--random_crop", action="store_true",
help="enable random crop (for style training in face-centered crop augmentation) / ランダムな切り出しを有効にする顔を中心としたaugmentationを行うときに画風の学習用に指定する")
parser.add_argument("--debug_dataset", action="store_true",
help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)")
parser.add_argument("--resolution", type=str, default=None,
help="resolution in training ('size' or 'width,height') / 学習時の画像解像度('サイズ'指定、または'幅,高さ'指定)")
parser.add_argument("--cache_latents", action="store_true",
help="cache latents to reduce memory (augmentations must be disabled) / メモリ削減のためにlatentをcacheするaugmentationは使用不可")
parser.add_argument("--enable_bucket", action="store_true",
help="enable buckets for multi aspect ratio training / 複数解像度学習のためのbucketを有効にする")
parser.add_argument("--min_bucket_reso", type=int, default=256, help="minimum resolution for buckets / bucketの最小解像度")
parser.add_argument("--max_bucket_reso", type=int, default=1024, help="maximum resolution for buckets / bucketの最大解像度")
if support_dreambooth:
# DreamBooth dataset
parser.add_argument("--reg_data_dir", type=str, default=None, help="directory for regularization images / 正則化画像データのディレクトリ")
if support_caption:
# caption dataset
parser.add_argument("--in_json", type=str, default=None, help="json metadata for dataset / データセットのmetadataのjsonファイル")
parser.add_argument("--dataset_repeats", type=int, default=1,
help="repeat dataset when training with captions / キャプションでの学習時にデータセットを繰り返す回数")
def add_sd_saving_arguments(parser: argparse.ArgumentParser):
parser.add_argument("--save_model_as", type=str, default=None, choices=[None, "ckpt", "safetensors", "diffusers", "diffusers_safetensors"],
help="format to save the model (default is same to original) / モデル保存時の形式(未指定時は元モデルと同じ)")
parser.add_argument("--use_safetensors", action='store_true',
help="use safetensors format to save (if save_model_as is not specified) / checkpoint、モデルをsafetensors形式で保存するsave_model_as未指定時")
# endregion
# region utils
def prepare_dataset_args(args: argparse.Namespace, support_metadata: bool):
# backward compatibility
if args.caption_extention is not None:
args.caption_extension = args.caption_extention
args.caption_extention = None
if args.cache_latents:
assert not args.color_aug, "when caching latents, color_aug cannot be used / latentをキャッシュするときはcolor_augは使えません"
# assert args.resolution is not None, f"resolution is required / resolution解像度を指定してください"
if args.resolution is not None:
args.resolution = tuple([int(r) for r in args.resolution.split(',')])
if len(args.resolution) == 1:
args.resolution = (args.resolution[0], args.resolution[0])
assert len(args.resolution) == 2, \
f"resolution must be 'size' or 'width,height' / resolution解像度'サイズ'または'','高さ'で指定してください: {args.resolution}"
if args.face_crop_aug_range is not None:
args.face_crop_aug_range = tuple([float(r) for r in args.face_crop_aug_range.split(',')])
assert len(args.face_crop_aug_range) == 2, \
f"face_crop_aug_range must be two floats / face_crop_aug_rangeは'下限,上限'で指定してください: {args.face_crop_aug_range}"
else:
args.face_crop_aug_range = None
if support_metadata:
if args.in_json is not None and args.color_aug:
print(f"latents in npz is ignored when color_aug is True / color_augを有効にした場合、npzファイルのlatentsは無視されます")
def load_tokenizer(args: argparse.Namespace):
print("prepare tokenizer")
if args.v2:
tokenizer = CLIPTokenizer.from_pretrained(V2_STABLE_DIFFUSION_PATH, subfolder="tokenizer")
else:
tokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH)
if args.max_token_length is not None:
print(f"update token length: {args.max_token_length}")
return tokenizer
def prepare_accelerator(args: argparse.Namespace):
if args.logging_dir is None:
log_with = None
logging_dir = None
else:
log_with = "tensorboard"
log_prefix = "" if args.log_prefix is None else args.log_prefix
logging_dir = args.logging_dir + "/" + log_prefix + time.strftime('%Y%m%d%H%M%S', time.localtime())
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision,
log_with=log_with, logging_dir=logging_dir)
# accelerateの互換性問題を解決する
accelerator_0_15 = True
try:
accelerator.unwrap_model("dummy", True)
print("Using accelerator 0.15.0 or above.")
except TypeError:
accelerator_0_15 = False
def unwrap_model(model):
if accelerator_0_15:
return accelerator.unwrap_model(model, True)
return accelerator.unwrap_model(model)
return accelerator, unwrap_model
def prepare_dtype(args: argparse.Namespace):
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
save_dtype = None
if args.save_precision == "fp16":
save_dtype = torch.float16
elif args.save_precision == "bf16":
save_dtype = torch.bfloat16
elif args.save_precision == "float":
save_dtype = torch.float32
return weight_dtype, save_dtype
def load_target_model(args: argparse.Namespace, weight_dtype):
load_stable_diffusion_format = os.path.isfile(args.pretrained_model_name_or_path) # determine SD or Diffusers
if load_stable_diffusion_format:
print("load StableDiffusion checkpoint")
text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.pretrained_model_name_or_path)
else:
print("load Diffusers pretrained models")
pipe = StableDiffusionPipeline.from_pretrained(args.pretrained_model_name_or_path, tokenizer=None, safety_checker=None)
text_encoder = pipe.text_encoder
vae = pipe.vae
unet = pipe.unet
del pipe
# VAEを読み込む
if args.vae is not None:
vae = model_util.load_vae(args.vae, weight_dtype)
print("additional VAE loaded")
return text_encoder, vae, unet, load_stable_diffusion_format
def patch_accelerator_for_fp16_training(accelerator):
org_unscale_grads = accelerator.scaler._unscale_grads_
def _unscale_grads_replacer(optimizer, inv_scale, found_inf, allow_fp16):
return org_unscale_grads(optimizer, inv_scale, found_inf, True)
accelerator.scaler._unscale_grads_ = _unscale_grads_replacer
def get_hidden_states(args: argparse.Namespace, input_ids, tokenizer, text_encoder, weight_dtype=None):
# with no_token_padding, the length is not max length, return result immediately
if input_ids.size()[-1] != tokenizer.model_max_length:
return text_encoder(input_ids)[0]
b_size = input_ids.size()[0]
input_ids = input_ids.reshape((-1, tokenizer.model_max_length)) # batch_size*3, 77
if args.clip_skip is None:
encoder_hidden_states = text_encoder(input_ids)[0]
else:
enc_out = text_encoder(input_ids, output_hidden_states=True, return_dict=True)
encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip]
if weight_dtype is not None:
# this is required for additional network training
encoder_hidden_states = encoder_hidden_states.to(weight_dtype)
encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states)
# bs*3, 77, 768 or 1024
encoder_hidden_states = encoder_hidden_states.reshape((b_size, -1, encoder_hidden_states.shape[-1]))
if args.max_token_length is not None:
if args.v2:
# v2: <BOS>...<EOS> <PAD> ... の三連を <BOS>...<EOS> <PAD> ... へ戻す 正直この実装でいいのかわからん
states_list = [encoder_hidden_states[:, 0].unsqueeze(1)] # <BOS>
for i in range(1, args.max_token_length, tokenizer.model_max_length):
chunk = encoder_hidden_states[:, i:i + tokenizer.model_max_length - 2] # <BOS> の後から 最後の前まで
if i > 0:
for j in range(len(chunk)):
if input_ids[j, 1] == tokenizer.eos_token: # 空、つまり <BOS> <EOS> <PAD> ...のパターン
chunk[j, 0] = chunk[j, 1] # 次の <PAD> の値をコピーする
states_list.append(chunk) # <BOS> の後から <EOS> の前まで
states_list.append(encoder_hidden_states[:, -1].unsqueeze(1)) # <EOS> か <PAD> のどちらか
encoder_hidden_states = torch.cat(states_list, dim=1)
else:
# v1: <BOS>...<EOS> の三連を <BOS>...<EOS> へ戻す
states_list = [encoder_hidden_states[:, 0].unsqueeze(1)] # <BOS>
for i in range(1, args.max_token_length, tokenizer.model_max_length):
states_list.append(encoder_hidden_states[:, i:i + tokenizer.model_max_length - 2]) # <BOS> の後から <EOS> の前まで
states_list.append(encoder_hidden_states[:, -1].unsqueeze(1)) # <EOS>
encoder_hidden_states = torch.cat(states_list, dim=1)
return encoder_hidden_states
def get_epoch_ckpt_name(args: argparse.Namespace, use_safetensors, epoch):
model_name = DEFAULT_EPOCH_NAME if args.output_name is None else args.output_name
ckpt_name = EPOCH_FILE_NAME.format(model_name, epoch) + (".safetensors" if use_safetensors else ".ckpt")
return model_name, ckpt_name
def save_on_epoch_end(args: argparse.Namespace, save_func, remove_old_func, epoch_no: int, num_train_epochs: int):
saving = epoch_no % args.save_every_n_epochs == 0 and epoch_no < num_train_epochs
if saving:
os.makedirs(args.output_dir, exist_ok=True)
save_func()
if args.save_last_n_epochs is not None:
remove_epoch_no = epoch_no - args.save_every_n_epochs * args.save_last_n_epochs
remove_old_func(remove_epoch_no)
return saving
def save_sd_model_on_epoch_end(args: argparse.Namespace, accelerator, src_path: str, save_stable_diffusion_format: bool, use_safetensors: bool, save_dtype: torch.dtype, epoch: int, num_train_epochs: int, global_step: int, text_encoder, unet, vae):
epoch_no = epoch + 1
model_name, ckpt_name = get_epoch_ckpt_name(args, use_safetensors, epoch_no)
if save_stable_diffusion_format:
def save_sd():
ckpt_file = os.path.join(args.output_dir, ckpt_name)
print(f"saving checkpoint: {ckpt_file}")
model_util.save_stable_diffusion_checkpoint(args.v2, ckpt_file, text_encoder, unet,
src_path, epoch_no, global_step, save_dtype, vae)
def remove_sd(old_epoch_no):
_, old_ckpt_name = get_epoch_ckpt_name(args, use_safetensors, old_epoch_no)
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
if os.path.exists(old_ckpt_file):
print(f"removing old checkpoint: {old_ckpt_file}")
os.remove(old_ckpt_file)
save_func = save_sd
remove_old_func = remove_sd
else:
def save_du():
out_dir = os.path.join(args.output_dir, EPOCH_DIFFUSERS_DIR_NAME.format(model_name, epoch_no))
print(f"saving model: {out_dir}")
os.makedirs(out_dir, exist_ok=True)
model_util.save_diffusers_checkpoint(args.v2, out_dir, text_encoder, unet,
src_path, vae=vae, use_safetensors=use_safetensors)
def remove_du(old_epoch_no):
out_dir_old = os.path.join(args.output_dir, EPOCH_DIFFUSERS_DIR_NAME.format(model_name, old_epoch_no))
if os.path.exists(out_dir_old):
print(f"removing old model: {out_dir_old}")
shutil.rmtree(out_dir_old)
save_func = save_du
remove_old_func = remove_du
saving = save_on_epoch_end(args, save_func, remove_old_func, epoch_no, num_train_epochs)
if saving and args.save_state:
save_state_on_epoch_end(args, accelerator, model_name, epoch_no)
def save_state_on_epoch_end(args: argparse.Namespace, accelerator, model_name, epoch_no):
print("saving state.")
accelerator.save_state(os.path.join(args.output_dir, EPOCH_STATE_NAME.format(model_name, epoch_no)))
last_n_epochs = args.save_last_n_epochs_state if args.save_last_n_epochs_state else args.save_last_n_epochs
if last_n_epochs is not None:
remove_epoch_no = epoch_no - args.save_every_n_epochs * last_n_epochs
state_dir_old = os.path.join(args.output_dir, EPOCH_STATE_NAME.format(model_name, remove_epoch_no))
if os.path.exists(state_dir_old):
print(f"removing old state: {state_dir_old}")
shutil.rmtree(state_dir_old)
def save_sd_model_on_train_end(args: argparse.Namespace, src_path: str, save_stable_diffusion_format: bool, use_safetensors: bool, save_dtype: torch.dtype, epoch: int, global_step: int, text_encoder, unet, vae):
model_name = DEFAULT_LAST_OUTPUT_NAME if args.output_name is None else args.output_name
if save_stable_diffusion_format:
os.makedirs(args.output_dir, exist_ok=True)
ckpt_name = model_name + (".safetensors" if use_safetensors else ".ckpt")
ckpt_file = os.path.join(args.output_dir, ckpt_name)
print(f"save trained model as StableDiffusion checkpoint to {ckpt_file}")
model_util.save_stable_diffusion_checkpoint(args.v2, ckpt_file, text_encoder, unet,
src_path, epoch, global_step, save_dtype, vae)
else:
out_dir = os.path.join(args.output_dir, model_name)
os.makedirs(out_dir, exist_ok=True)
print(f"save trained model as Diffusers to {out_dir}")
model_util.save_diffusers_checkpoint(args.v2, out_dir, text_encoder, unet,
src_path, vae=vae, use_safetensors=use_safetensors)
def save_state_on_train_end(args: argparse.Namespace, accelerator):
print("saving last state.")
os.makedirs(args.output_dir, exist_ok=True)
model_name = DEFAULT_LAST_OUTPUT_NAME if args.output_name is None else args.output_name
accelerator.save_state(os.path.join(args.output_dir, LAST_STATE_NAME.format(model_name)))
# endregion