36b06d41bf
Add diffusers_fine_tuning
775 lines
31 KiB
Python
775 lines
31 KiB
Python
# このスクリプトのライセンスは、train_dreambooth.pyと同じくApache License 2.0とします
|
||
# (c) 2022 Kohya S. @kohya_ss
|
||
|
||
import argparse
|
||
import math
|
||
import os
|
||
import random
|
||
import json
|
||
import importlib
|
||
|
||
from tqdm import tqdm
|
||
import torch
|
||
from accelerate import Accelerator
|
||
from accelerate.utils import set_seed
|
||
from transformers import CLIPTextModel, CLIPTokenizer
|
||
import diffusers
|
||
from diffusers import DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
|
||
import numpy as np
|
||
from einops import rearrange
|
||
from torch import einsum
|
||
|
||
import fine_tuning_utils_ber as fine_tuning_utils
|
||
|
||
# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う
|
||
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
|
||
|
||
# checkpointファイル名
|
||
LAST_CHECKPOINT_NAME = "last.ckpt"
|
||
EPOCH_CHECKPOINT_NAME = "epoch-{:06d}.ckpt"
|
||
|
||
|
||
def collate_fn(examples):
|
||
return examples[0]
|
||
|
||
|
||
class FineTuningDataset(torch.utils.data.Dataset):
|
||
def __init__(self, metadata, train_data_dir, batch_size, tokenizer, max_token_length, shuffle_caption, dataset_repeats, debug) -> None:
|
||
super().__init__()
|
||
|
||
self.metadata = metadata
|
||
self.train_data_dir = train_data_dir
|
||
self.batch_size = batch_size
|
||
self.tokenizer = tokenizer
|
||
self.max_token_length = max_token_length
|
||
self.shuffle_caption = shuffle_caption
|
||
self.debug = debug
|
||
|
||
self.tokenizer_max_length = self.tokenizer.model_max_length if max_token_length is None else max_token_length + 2
|
||
|
||
print("make buckets")
|
||
|
||
# 最初に数を数える
|
||
self.bucket_resos = set()
|
||
for img_md in metadata.values():
|
||
if 'train_resolution' in img_md:
|
||
self.bucket_resos.add(tuple(img_md['train_resolution']))
|
||
self.bucket_resos = list(self.bucket_resos)
|
||
self.bucket_resos.sort()
|
||
print(f"number of buckets: {len(self.bucket_resos)}")
|
||
|
||
reso_to_index = {}
|
||
for i, reso in enumerate(self.bucket_resos):
|
||
reso_to_index[reso] = i
|
||
|
||
# bucketに割り当てていく
|
||
self.buckets = [[] for _ in range(len(self.bucket_resos))]
|
||
n = 1 if dataset_repeats is None else dataset_repeats
|
||
images_count = 0
|
||
for image_key, img_md in metadata.items():
|
||
if 'train_resolution' not in img_md:
|
||
continue
|
||
if not os.path.exists(os.path.join(self.train_data_dir, image_key + '.npz')):
|
||
continue
|
||
|
||
reso = tuple(img_md['train_resolution'])
|
||
for _ in range(n):
|
||
self.buckets[reso_to_index[reso]].append(image_key)
|
||
images_count += n
|
||
|
||
# 参照用indexを作る
|
||
self.buckets_indices = []
|
||
for bucket_index, bucket in enumerate(self.buckets):
|
||
batch_count = int(math.ceil(len(bucket) / self.batch_size))
|
||
for batch_index in range(batch_count):
|
||
self.buckets_indices.append((bucket_index, batch_index))
|
||
|
||
self.shuffle_buckets()
|
||
self._length = len(self.buckets_indices)
|
||
self.images_count = images_count
|
||
|
||
def show_buckets(self):
|
||
for i, (reso, bucket) in enumerate(zip(self.bucket_resos, self.buckets)):
|
||
print(f"bucket {i}: resolution {reso}, count: {len(bucket)}")
|
||
|
||
def shuffle_buckets(self):
|
||
random.shuffle(self.buckets_indices)
|
||
for bucket in self.buckets:
|
||
random.shuffle(bucket)
|
||
|
||
def load_latent(self, image_key):
|
||
return np.load(os.path.join(self.train_data_dir, image_key + '.npz'))['arr_0']
|
||
|
||
def __len__(self):
|
||
return self._length
|
||
|
||
def __getitem__(self, index):
|
||
if index == 0:
|
||
self.shuffle_buckets()
|
||
|
||
bucket = self.buckets[self.buckets_indices[index][0]]
|
||
image_index = self.buckets_indices[index][1] * self.batch_size
|
||
|
||
input_ids_list = []
|
||
latents_list = []
|
||
captions = []
|
||
for image_key in bucket[image_index:image_index + self.batch_size]:
|
||
img_md = self.metadata[image_key]
|
||
caption = img_md.get('caption')
|
||
tags = img_md.get('tags')
|
||
|
||
if caption is None:
|
||
caption = tags
|
||
elif tags is not None and len(tags) > 0:
|
||
caption = caption + ', ' + tags
|
||
assert caption is not None and len(caption) > 0, f"caption or tag is required / キャプションまたはタグは必須です:{image_key}"
|
||
|
||
latents = self.load_latent(image_key)
|
||
|
||
if self.shuffle_caption:
|
||
tokens = caption.strip().split(",")
|
||
random.shuffle(tokens)
|
||
caption = ",".join(tokens).strip()
|
||
|
||
captions.append(caption)
|
||
|
||
input_ids = self.tokenizer(caption, padding="max_length", truncation=True,
|
||
max_length=self.tokenizer_max_length, return_tensors="pt").input_ids
|
||
|
||
# 77以上の時は "<CLS> .... <EOS> <EOS> <EOS>" でトータル227とかになっているので、"<CLS>...<EOS>"の三連に変換する
|
||
# 1111氏のやつは , で区切る、とかしているようだが とりあえず単純に
|
||
if self.tokenizer_max_length > self.tokenizer.model_max_length:
|
||
input_ids = input_ids.squeeze(0)
|
||
iids_list = []
|
||
for i in range(1, self.tokenizer_max_length - self.tokenizer.model_max_length + 2, self.tokenizer.model_max_length - 2):
|
||
iid = (input_ids[0].unsqueeze(0),
|
||
input_ids[i:i + self.tokenizer.model_max_length - 2],
|
||
input_ids[-1].unsqueeze(0))
|
||
iid = torch.cat(iid)
|
||
iids_list.append(iid)
|
||
input_ids = torch.stack(iids_list) # 3,77
|
||
|
||
input_ids_list.append(input_ids)
|
||
latents_list.append(torch.FloatTensor(latents))
|
||
|
||
example = {}
|
||
example['input_ids'] = torch.stack(input_ids_list)
|
||
example['latents'] = torch.stack(latents_list)
|
||
if self.debug:
|
||
example['image_keys'] = bucket[image_index:image_index + self.batch_size]
|
||
example['captions'] = captions
|
||
return example
|
||
|
||
|
||
def save_hypernetwork(output_file, hypernetwork):
|
||
state_dict = hypernetwork.get_state_dict()
|
||
torch.save(state_dict, output_file)
|
||
|
||
|
||
def train(args):
|
||
fine_tuning = args.hypernetwork_module is None # fine tuning or hypernetwork training
|
||
|
||
# モデル形式のオプション設定を確認する
|
||
use_stable_diffusion_format = os.path.isfile(args.pretrained_model_name_or_path)
|
||
if not use_stable_diffusion_format:
|
||
assert os.path.exists(
|
||
args.pretrained_model_name_or_path), f"no pretrained model / 学習元モデルがありません : {args.pretrained_model_name_or_path}"
|
||
|
||
assert not fine_tuning or (
|
||
args.save_every_n_epochs is None or use_stable_diffusion_format), "when loading Diffusers model, save_every_n_epochs does not work / Diffusersのモデルを読み込むときにはsave_every_n_epochsオプションは無効になります"
|
||
|
||
if args.seed is not None:
|
||
set_seed(args.seed)
|
||
|
||
# メタデータを読み込む
|
||
if os.path.exists(args.in_json):
|
||
print(f"loading existing metadata: {args.in_json}")
|
||
with open(args.in_json, "rt", encoding='utf-8') as f:
|
||
metadata = json.load(f)
|
||
else:
|
||
print(f"no metadata / メタデータファイルがありません: {args.in_json}")
|
||
return
|
||
|
||
# tokenizerを読み込む
|
||
print("prepare tokenizer")
|
||
tokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH)
|
||
if args.max_token_length is not None:
|
||
print(f"update token length in tokenizer: {args.max_token_length}")
|
||
|
||
# datasetを用意する
|
||
print("prepare dataset")
|
||
train_dataset = FineTuningDataset(metadata, args.train_data_dir, args.train_batch_size,
|
||
tokenizer, args.max_token_length, args.shuffle_caption, args.dataset_repeats, args.debug_dataset)
|
||
|
||
if args.debug_dataset:
|
||
print(f"Total dataset length / データセットの長さ: {len(train_dataset)}")
|
||
print(f"Total images / 画像数: {train_dataset.images_count}")
|
||
train_dataset.show_buckets()
|
||
i = 0
|
||
for example in train_dataset:
|
||
print(f"image: {example['image_keys']}")
|
||
print(f"captions: {example['captions']}")
|
||
print(f"latents: {example['latents'].shape}")
|
||
print(f"input_ids: {example['input_ids'].shape}")
|
||
print(example['input_ids'])
|
||
i += 1
|
||
if i >= 8:
|
||
break
|
||
return
|
||
|
||
# acceleratorを準備する
|
||
print("prepare accelerator")
|
||
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision)
|
||
|
||
# モデルを読み込む
|
||
if use_stable_diffusion_format:
|
||
print("load StableDiffusion checkpoint")
|
||
text_encoder, _, unet = fine_tuning_utils.load_models_from_stable_diffusion_checkpoint(args.pretrained_model_name_or_path)
|
||
else:
|
||
print("load Diffusers pretrained models")
|
||
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
|
||
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
|
||
|
||
# モデルに xformers とか memory efficient attention を組み込む
|
||
replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
|
||
|
||
if not fine_tuning:
|
||
# Hypernetwork
|
||
print("import hypernetwork module:", args.hypernetwork_module)
|
||
hyp_module = importlib.import_module(args.hypernetwork_module)
|
||
|
||
hypernetwork = hyp_module.Hypernetwork()
|
||
|
||
if args.hypernetwork_weights is not None:
|
||
print("load hypernetwork weights from:", args.hypernetwork_weights)
|
||
hyp_sd = torch.load(args.hypernetwork_weights, map_location='cpu')
|
||
success = hypernetwork.load_from_state_dict(hyp_sd)
|
||
assert success, "hypernetwork weights loading failed."
|
||
|
||
print("apply hypernetwork")
|
||
hypernetwork.apply_to_diffusers(None, text_encoder, unet)
|
||
|
||
# mixed precisionに対応した型を用意しておき適宜castする
|
||
weight_dtype = torch.float32
|
||
if args.mixed_precision == "fp16":
|
||
weight_dtype = torch.float16
|
||
elif args.mixed_precision == "bf16":
|
||
weight_dtype = torch.bfloat16
|
||
|
||
# 学習を準備する
|
||
if fine_tuning:
|
||
if args.gradient_checkpointing:
|
||
unet.enable_gradient_checkpointing()
|
||
unet.requires_grad_(True) # unetは学習しない
|
||
net = unet
|
||
else:
|
||
unet.requires_grad_(False) # unetは学習しない
|
||
unet.eval()
|
||
|
||
hypernetwork.requires_grad_(True)
|
||
net = hypernetwork
|
||
|
||
# 学習に必要なクラスを準備する
|
||
print("prepare optimizer, data loader etc.")
|
||
|
||
# 8-bit Adamを使う
|
||
if args.use_8bit_adam:
|
||
try:
|
||
import bitsandbytes as bnb
|
||
except ImportError:
|
||
raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです")
|
||
print("use 8-bit Adam optimizer")
|
||
optimizer_class = bnb.optim.AdamW8bit
|
||
else:
|
||
optimizer_class = torch.optim.AdamW
|
||
|
||
# betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略
|
||
optimizer = optimizer_class(net.parameters(), lr=args.learning_rate)
|
||
|
||
# dataloaderを準備する
|
||
# DataLoaderのプロセス数:0はメインプロセスになる
|
||
n_workers = min(8, os.cpu_count() - 1) # cpu_count-1 ただし最大8
|
||
train_dataloader = torch.utils.data.DataLoader(
|
||
train_dataset, batch_size=1, shuffle=True, collate_fn=collate_fn, num_workers=n_workers)
|
||
|
||
# lr schedulerを用意する
|
||
lr_scheduler = diffusers.optimization.get_scheduler(
|
||
"constant", optimizer, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps)
|
||
|
||
# acceleratorがなんかよろしくやってくれるらしい
|
||
if fine_tuning:
|
||
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler)
|
||
net = unet
|
||
else:
|
||
unet, hypernetwork, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||
unet, hypernetwork, optimizer, train_dataloader, lr_scheduler)
|
||
net = hypernetwork
|
||
|
||
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
||
text_encoder.requires_grad_(False) # text encoderは学習しない
|
||
|
||
# epoch数を計算する
|
||
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
||
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
||
|
||
# 学習する
|
||
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
||
print("running training / 学習開始")
|
||
print(f" num examples / サンプル数: {train_dataset.images_count}")
|
||
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
|
||
print(f" num epochs / epoch数: {num_train_epochs}")
|
||
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
|
||
print(f" total train batch size (with parallel & distributed) / 総バッチサイズ(並列学習含む): {total_batch_size}")
|
||
print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
|
||
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
|
||
|
||
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process, desc="steps")
|
||
global_step = 0
|
||
|
||
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
||
|
||
if accelerator.is_main_process:
|
||
accelerator.init_trackers("finetuning" if fine_tuning else "hypernetwork")
|
||
|
||
# 以下 train_dreambooth.py からほぼコピペ
|
||
for epoch in range(num_train_epochs):
|
||
print(f"epoch {epoch+1}/{num_train_epochs}")
|
||
net.train()
|
||
|
||
loss_total = 0
|
||
for step, batch in enumerate(train_dataloader):
|
||
with accelerator.accumulate(unet):
|
||
latents = batch["latents"].to(accelerator.device)
|
||
latents = latents * 0.18215
|
||
b_size = latents.shape[0]
|
||
|
||
with torch.no_grad():
|
||
# Get the text embedding for conditioning
|
||
input_ids = batch["input_ids"].to(accelerator.device)
|
||
input_ids = input_ids.reshape((-1, tokenizer.model_max_length)) # batch_size*3, 77
|
||
|
||
if args.clip_skip is None:
|
||
encoder_hidden_states = text_encoder(input_ids)[0]
|
||
else:
|
||
enc_out = text_encoder(input_ids, output_hidden_states=True, return_dict=True)
|
||
encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip]
|
||
encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states)
|
||
|
||
encoder_hidden_states = encoder_hidden_states.reshape((b_size, -1, encoder_hidden_states.shape[-1]))
|
||
|
||
if args.max_token_length is not None:
|
||
# <CLS>...<EOS> の三連を <CLS>...<EOS> へ戻す
|
||
sts_list = [encoder_hidden_states[:, 0].unsqueeze(1)]
|
||
for i in range(1, args.max_token_length, tokenizer.model_max_length):
|
||
sts_list.append(encoder_hidden_states[:, i:i + tokenizer.model_max_length - 2])
|
||
sts_list.append(encoder_hidden_states[:, -1].unsqueeze(1))
|
||
encoder_hidden_states = torch.cat(sts_list, dim=1)
|
||
|
||
# Sample noise that we'll add to the latents
|
||
noise = torch.randn_like(latents, device=latents.device)
|
||
|
||
# Sample a random timestep for each image
|
||
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
|
||
timesteps = timesteps.long()
|
||
|
||
# Add noise to the latents according to the noise magnitude at each timestep
|
||
# (this is the forward diffusion process)
|
||
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
||
|
||
# Predict the noise residual
|
||
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
||
|
||
loss = torch.nn.functional.mse_loss(noise_pred.float(), noise.float(), reduction="mean")
|
||
|
||
accelerator.backward(loss)
|
||
if accelerator.sync_gradients:
|
||
accelerator.clip_grad_norm_(net.parameters(), 1.0) # args.max_grad_norm)
|
||
|
||
optimizer.step()
|
||
lr_scheduler.step()
|
||
optimizer.zero_grad(set_to_none=True)
|
||
|
||
# Checks if the accelerator has performed an optimization step behind the scenes
|
||
if accelerator.sync_gradients:
|
||
progress_bar.update(1)
|
||
global_step += 1
|
||
|
||
current_loss = loss.detach().item() * b_size
|
||
loss_total += current_loss
|
||
avr_loss = loss_total / (step+1)
|
||
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
|
||
progress_bar.set_postfix(**logs)
|
||
# accelerator.log(logs, step=global_step)
|
||
|
||
if global_step >= args.max_train_steps:
|
||
break
|
||
|
||
accelerator.wait_for_everyone()
|
||
|
||
if args.save_every_n_epochs is not None:
|
||
if (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs:
|
||
print("saving check point.")
|
||
os.makedirs(args.output_dir, exist_ok=True)
|
||
ckpt_file = os.path.join(args.output_dir, EPOCH_CHECKPOINT_NAME.format(epoch + 1))
|
||
|
||
if fine_tuning:
|
||
fine_tuning_utils.save_stable_diffusion_checkpoint(
|
||
ckpt_file, text_encoder, accelerator.unwrap_model(net), args.pretrained_model_name_or_path, epoch + 1, global_step)
|
||
else:
|
||
save_hypernetwork(ckpt_file, accelerator.unwrap_model(net))
|
||
|
||
is_main_process = accelerator.is_main_process
|
||
if is_main_process:
|
||
net = accelerator.unwrap_model(net)
|
||
|
||
accelerator.end_training()
|
||
del accelerator # この後メモリを使うのでこれは消す
|
||
|
||
if is_main_process:
|
||
os.makedirs(args.output_dir, exist_ok=True)
|
||
if fine_tuning:
|
||
if use_stable_diffusion_format:
|
||
ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME)
|
||
print(f"save trained model as StableDiffusion checkpoint to {ckpt_file}")
|
||
fine_tuning_utils.save_stable_diffusion_checkpoint(
|
||
ckpt_file, text_encoder, unet, args.pretrained_model_name_or_path, epoch, global_step)
|
||
else:
|
||
# Create the pipeline using using the trained modules and save it.
|
||
print(f"save trained model as Diffusers to {args.output_dir}")
|
||
pipeline = StableDiffusionPipeline.from_pretrained(
|
||
args.pretrained_model_name_or_path,
|
||
unet=unet,
|
||
text_encoder=text_encoder,
|
||
)
|
||
pipeline.save_pretrained(args.output_dir)
|
||
else:
|
||
ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME)
|
||
print(f"save trained model to {ckpt_file}")
|
||
save_hypernetwork(ckpt_file, net)
|
||
print("model saved.")
|
||
|
||
|
||
# region モジュール入れ替え部
|
||
"""
|
||
高速化のためのモジュール入れ替え
|
||
"""
|
||
|
||
# FlashAttentionを使うCrossAttention
|
||
# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py
|
||
# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE
|
||
|
||
# constants
|
||
|
||
EPSILON = 1e-6
|
||
|
||
# helper functions
|
||
|
||
|
||
def exists(val):
|
||
return val is not None
|
||
|
||
|
||
def default(val, d):
|
||
return val if exists(val) else d
|
||
|
||
# flash attention forwards and backwards
|
||
|
||
# https://arxiv.org/abs/2205.14135
|
||
|
||
|
||
class FlashAttentionFunction(torch.autograd.function.Function):
|
||
@ staticmethod
|
||
@ torch.no_grad()
|
||
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
|
||
""" Algorithm 2 in the paper """
|
||
|
||
device = q.device
|
||
dtype = q.dtype
|
||
max_neg_value = -torch.finfo(q.dtype).max
|
||
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
||
|
||
o = torch.zeros_like(q)
|
||
all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device)
|
||
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device)
|
||
|
||
scale = (q.shape[-1] ** -0.5)
|
||
|
||
if not exists(mask):
|
||
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
|
||
else:
|
||
mask = rearrange(mask, 'b n -> b 1 1 n')
|
||
mask = mask.split(q_bucket_size, dim=-1)
|
||
|
||
row_splits = zip(
|
||
q.split(q_bucket_size, dim=-2),
|
||
o.split(q_bucket_size, dim=-2),
|
||
mask,
|
||
all_row_sums.split(q_bucket_size, dim=-2),
|
||
all_row_maxes.split(q_bucket_size, dim=-2),
|
||
)
|
||
|
||
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
|
||
q_start_index = ind * q_bucket_size - qk_len_diff
|
||
|
||
col_splits = zip(
|
||
k.split(k_bucket_size, dim=-2),
|
||
v.split(k_bucket_size, dim=-2),
|
||
)
|
||
|
||
for k_ind, (kc, vc) in enumerate(col_splits):
|
||
k_start_index = k_ind * k_bucket_size
|
||
|
||
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
|
||
|
||
if exists(row_mask):
|
||
attn_weights.masked_fill_(~row_mask, max_neg_value)
|
||
|
||
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
||
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
|
||
device=device).triu(q_start_index - k_start_index + 1)
|
||
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
||
|
||
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
|
||
attn_weights -= block_row_maxes
|
||
exp_weights = torch.exp(attn_weights)
|
||
|
||
if exists(row_mask):
|
||
exp_weights.masked_fill_(~row_mask, 0.)
|
||
|
||
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON)
|
||
|
||
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
|
||
|
||
exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc)
|
||
|
||
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
|
||
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
|
||
|
||
new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums
|
||
|
||
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values)
|
||
|
||
row_maxes.copy_(new_row_maxes)
|
||
row_sums.copy_(new_row_sums)
|
||
|
||
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
|
||
ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)
|
||
|
||
return o
|
||
|
||
@ staticmethod
|
||
@ torch.no_grad()
|
||
def backward(ctx, do):
|
||
""" Algorithm 4 in the paper """
|
||
|
||
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
|
||
q, k, v, o, l, m = ctx.saved_tensors
|
||
|
||
device = q.device
|
||
|
||
max_neg_value = -torch.finfo(q.dtype).max
|
||
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
||
|
||
dq = torch.zeros_like(q)
|
||
dk = torch.zeros_like(k)
|
||
dv = torch.zeros_like(v)
|
||
|
||
row_splits = zip(
|
||
q.split(q_bucket_size, dim=-2),
|
||
o.split(q_bucket_size, dim=-2),
|
||
do.split(q_bucket_size, dim=-2),
|
||
mask,
|
||
l.split(q_bucket_size, dim=-2),
|
||
m.split(q_bucket_size, dim=-2),
|
||
dq.split(q_bucket_size, dim=-2)
|
||
)
|
||
|
||
for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
|
||
q_start_index = ind * q_bucket_size - qk_len_diff
|
||
|
||
col_splits = zip(
|
||
k.split(k_bucket_size, dim=-2),
|
||
v.split(k_bucket_size, dim=-2),
|
||
dk.split(k_bucket_size, dim=-2),
|
||
dv.split(k_bucket_size, dim=-2),
|
||
)
|
||
|
||
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
|
||
k_start_index = k_ind * k_bucket_size
|
||
|
||
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
|
||
|
||
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
||
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
|
||
device=device).triu(q_start_index - k_start_index + 1)
|
||
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
||
|
||
exp_attn_weights = torch.exp(attn_weights - mc)
|
||
|
||
if exists(row_mask):
|
||
exp_attn_weights.masked_fill_(~row_mask, 0.)
|
||
|
||
p = exp_attn_weights / lc
|
||
|
||
dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc)
|
||
dp = einsum('... i d, ... j d -> ... i j', doc, vc)
|
||
|
||
D = (doc * oc).sum(dim=-1, keepdims=True)
|
||
ds = p * scale * (dp - D)
|
||
|
||
dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc)
|
||
dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc)
|
||
|
||
dqc.add_(dq_chunk)
|
||
dkc.add_(dk_chunk)
|
||
dvc.add_(dv_chunk)
|
||
|
||
return dq, dk, dv, None, None, None, None
|
||
|
||
|
||
def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers):
|
||
if mem_eff_attn:
|
||
replace_unet_cross_attn_to_memory_efficient()
|
||
elif xformers:
|
||
replace_unet_cross_attn_to_xformers()
|
||
|
||
|
||
def replace_unet_cross_attn_to_memory_efficient():
|
||
print("Replace CrossAttention.forward to use FlashAttention")
|
||
flash_func = FlashAttentionFunction
|
||
|
||
def forward_flash_attn(self, x, context=None, mask=None):
|
||
q_bucket_size = 512
|
||
k_bucket_size = 1024
|
||
|
||
h = self.heads
|
||
q = self.to_q(x)
|
||
|
||
context = context if context is not None else x
|
||
context = context.to(x.dtype)
|
||
|
||
if hasattr(self, 'hypernetwork') and self.hypernetwork is not None:
|
||
context_k, context_v = self.hypernetwork.forward(x, context)
|
||
context_k = context_k.to(x.dtype)
|
||
context_v = context_v.to(x.dtype)
|
||
else:
|
||
context_k = context
|
||
context_v = context
|
||
|
||
k = self.to_k(context_k)
|
||
v = self.to_v(context_v)
|
||
del context, x
|
||
|
||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
|
||
|
||
out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size)
|
||
|
||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||
|
||
# diffusers 0.6.0
|
||
if type(self.to_out) is torch.nn.Sequential:
|
||
return self.to_out(out)
|
||
|
||
# diffusers 0.7.0~ わざわざ変えるなよ (;´Д`)
|
||
out = self.to_out[0](out)
|
||
out = self.to_out[1](out)
|
||
return out
|
||
|
||
diffusers.models.attention.CrossAttention.forward = forward_flash_attn
|
||
|
||
|
||
def replace_unet_cross_attn_to_xformers():
|
||
print("Replace CrossAttention.forward to use xformers")
|
||
try:
|
||
import xformers.ops
|
||
except ImportError:
|
||
raise ImportError("No xformers / xformersがインストールされていないようです")
|
||
|
||
def forward_xformers(self, x, context=None, mask=None):
|
||
h = self.heads
|
||
q_in = self.to_q(x)
|
||
|
||
context = default(context, x)
|
||
context = context.to(x.dtype)
|
||
|
||
if hasattr(self, 'hypernetwork') and self.hypernetwork is not None:
|
||
context_k, context_v = self.hypernetwork.forward(x, context)
|
||
context_k = context_k.to(x.dtype)
|
||
context_v = context_v.to(x.dtype)
|
||
else:
|
||
context_k = context
|
||
context_v = context
|
||
|
||
k_in = self.to_k(context_k)
|
||
v_in = self.to_v(context_v)
|
||
|
||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
|
||
del q_in, k_in, v_in
|
||
|
||
q = q.contiguous()
|
||
k = k.contiguous()
|
||
v = v.contiguous()
|
||
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる
|
||
|
||
out = rearrange(out, 'b n h d -> b n (h d)', h=h)
|
||
|
||
# diffusers 0.6.0
|
||
if type(self.to_out) is torch.nn.Sequential:
|
||
return self.to_out(out)
|
||
|
||
# diffusers 0.7.0~
|
||
out = self.to_out[0](out)
|
||
out = self.to_out[1](out)
|
||
return out
|
||
|
||
diffusers.models.attention.CrossAttention.forward = forward_xformers
|
||
# endregion
|
||
|
||
|
||
if __name__ == '__main__':
|
||
# torch.cuda.set_per_process_memory_fraction(0.48)
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument("--pretrained_model_name_or_path", type=str, default=None,
|
||
help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル")
|
||
parser.add_argument("--in_json", type=str, default=None, help="metadata file to input / 読みこむメタデータファイル")
|
||
parser.add_argument("--shuffle_caption", action="store_true",
|
||
help="shuffle comma-separated caption when fine tuning / fine tuning時にコンマで区切られたcaptionの各要素をshuffleする")
|
||
parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ")
|
||
parser.add_argument("--dataset_repeats", type=int, default=None, help="num times to repeat dataset / 学習にデータセットを繰り返す回数")
|
||
parser.add_argument("--output_dir", type=str, default=None,
|
||
help="directory to output trained model, save as same format as input / 学習後のモデル出力先ディレクトリ(入力と同じ形式で保存)")
|
||
parser.add_argument("--hypernetwork_module", type=str, default=None,
|
||
help='train hypernetwork instead of fine tuning, module to use / fine tuningの代わりにHypernetworkの学習をする場合、そのモジュール')
|
||
parser.add_argument("--hypernetwork_weights", type=str, default=None,
|
||
help='hypernetwork weights to initialize for additional training / Hypernetworkの学習時に読み込む重み(Hypernetworkの追加学習)')
|
||
parser.add_argument("--save_every_n_epochs", type=int, default=None,
|
||
help="save checkpoint every N epochs (only supports in StableDiffusion checkpoint) / 学習中のモデルを指定エポックごとに保存する(StableDiffusion形式のモデルを読み込んだ場合のみ有効)")
|
||
parser.add_argument("--max_token_length", type=int, default=None, choices=[None, 150, 225],
|
||
help="max token length of text encoder (default for 75, 150 or 225) / text encoderのトークンの最大長(未指定で75、150または225が指定可)")
|
||
parser.add_argument("--train_batch_size", type=int, default=1,
|
||
help="batch size for training / 学習時のバッチサイズ")
|
||
parser.add_argument("--use_8bit_adam", action="store_true",
|
||
help="use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使う(bitsandbytesのインストールが必要)")
|
||
parser.add_argument("--mem_eff_attn", action="store_true",
|
||
help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う")
|
||
parser.add_argument("--xformers", action="store_true",
|
||
help="use xformers for CrossAttention / CrossAttentionにxformersを使う")
|
||
parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率")
|
||
parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数")
|
||
parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed")
|
||
parser.add_argument("--gradient_checkpointing", action="store_true",
|
||
help="enable gradient checkpointing / grandient checkpointingを有効にする")
|
||
parser.add_argument("--gradient_accumulation_steps", type=int, default=1,
|
||
help="Number of updates steps to accumulate before performing a backward/update pass / 学習時に逆伝播をする前に勾配を合計するステップ数")
|
||
parser.add_argument("--mixed_precision", type=str, default="no",
|
||
choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度")
|
||
parser.add_argument("--clip_skip", type=int, default=None,
|
||
help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いる(nは1以上)")
|
||
parser.add_argument("--debug_dataset", action="store_true",
|
||
help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)")
|
||
parser.add_argument("--save_half", action="store_true",
|
||
help="save ckpt model with fp16 precision")
|
||
|
||
args = parser.parse_args()
|
||
train(args)
|