.vscode | ||
bitsandbytes_windows | ||
examples | ||
finetune | ||
library | ||
networks | ||
tools | ||
v2_inference | ||
.gitignore | ||
dreambooth_gui.py | ||
fine_tune_README_ja.md | ||
fine_tune_README.md | ||
fine_tune.py | ||
finetune_gui.py | ||
gen_img_diffusers.py | ||
gui.ps1 | ||
kohya_gui.py | ||
lora_gui.py | ||
README.md | ||
requirements.txt | ||
setup.py | ||
style.css | ||
train_db_README-ja.md | ||
train_db_README.md | ||
train_db.py | ||
train_network_README-ja.md | ||
train_network_README.md | ||
train_network.py | ||
upgrade.ps1 | ||
utilities.cmd |
Kohya's dreambooth and finetuning
This repository now includes the solutions provided by Kohya_ss in a single location. I have combined both solutions under one repository to align with the new official Kohya repository where he will maintain his code from now on: https://github.com/kohya-ss/sd-scripts.
A note accompanying the release of his new repository can be found here: https://note.com/kohya_ss/n/nba4eceaa4594
Required Dependencies
Python 3.10.6+ and Git:
- Python 3.10.6+: https://www.python.org/ftp/python/3.10.6/python-3.10.6-amd64.exe
- git: https://git-scm.com/download/win
Give unrestricted script access to powershell so venv can work:
- Open an administrator powershell window
- Type
Set-ExecutionPolicy Unrestricted
and answer A - Close admin powershell window
Installation
Open a regular Powershell terminal and type the following inside:
git clone https://github.com/bmaltais/kohya_ss.git
cd kohya_ss
python -m venv --system-site-packages venv
.\venv\Scripts\activate
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
pip install --upgrade -r requirements.txt
pip install -U -I --no-deps https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl
cp .\bitsandbytes_windows\*.dll .\venv\Lib\site-packages\bitsandbytes\
cp .\bitsandbytes_windows\cextension.py .\venv\Lib\site-packages\bitsandbytes\cextension.py
cp .\bitsandbytes_windows\main.py .\venv\Lib\site-packages\bitsandbytes\cuda_setup\main.py
accelerate config
Optional: CUDNN 8.6
This step is optional but can improve the learning speed for NVidia 4090 owners...
Due to the filesize I can't host the DLLs needed for CUDNN 8.6 on Github, I strongly advise you download them for a speed boost in sample generation (almost 50% on 4090) you can download them from here: https://b1.thefileditch.ch/mwxKTEtelILoIbMbruuM.zip
To install simply unzip the directory and place the cudnn_windows folder in the root of the kohya_diffusers_fine_tuning repo.
Run the following command to install:
.\venv\Scripts\activate
python .\tools\cudann_1.8_install.py
Upgrade
When a new release comes out you can upgrade your repo with the following command:
cd kohya_ss
git pull
.\venv\Scripts\activate
pip install --upgrade -r requirements.txt
Once the commands have completed successfully you should be ready to use the new version.
Launching the GUI
To run the GUI you simply use this command:
gui.ps1
Dreambooth
You can find the dreambooth solution spercific Dreambooth README
Finetune
You can find the finetune solution spercific Finetune README
Train Network
You can find the train network solution spercific Train network README
LoRA
Training a LoRA currently use the train_network.py
python code. You can create LoRA network by using the all-in-one gui.cmd
or by running the dedicated LoRA training GUI with:
.\venv\Scripts\activate
python lora_gui.py
Once you have created the LoRA network you can generate images via auto1111 by installing the extension found here: https://github.com/kohya-ss/sd-webui-additional-networks
Change history
-
2023/01/10 (v20.0):
- Update code base to match latest kohys_ss code upgrade in https://github.com/kohya-ss/sd-scripts
-
2023/01/09 (v19.4.3):
- Add vae support to dreambooth GUI
- Add gradient_checkpointing, gradient_accumulation_steps, mem_eff_attn, shuffle_caption to finetune GUI
- Add gradient_accumulation_steps, mem_eff_attn to dreambooth lora gui
-
2023/01/08 (v19.4.2):
- Add find/replace option to Basic Caption utility
- Add resume training and save_state option to finetune UI
-
2023/01/06 (v19.4.1):
- Emergency fix for new version of gradio causing issues with drop down menus. Please run
pip install -U -r requirements.txt
to fix the issue after pulling this repo.
- Emergency fix for new version of gradio causing issues with drop down menus. Please run
-
2023/01/06 (v19.4):
- Add new Utility to Extract a LoRA from a finetuned model
-
2023/01/06 (v19.3.1):
- Emergency fix for dreambooth_ui no longer working, sorry
- Add LoRA network merge too GUI. Run
pip install -U -r requirements.txt
after pulling this new release.
-
2023/01/05 (v19.3):
- Add support for
--clip_skip
option - Add missing
detect_face_rotate.py
to tools folder - Add
gui.cmd
for easy start of GUI
- Add support for
-
2023/01/02 (v19.2) update:
- Finetune, add xformers, 8bit adam, min bucket, max bucket, batch size and flip augmentation support for dataset preparation
- Finetune, add "Dataset preparation" tab to group task specific options
-
2023/01/01 (v19.2) update:
- add support for color and flip augmentation to "Dreambooth LoRA"
-
2023/01/01 (v19.1) update:
- merge kohys_ss upstream code updates
- rework Dreambooth LoRA GUI
- fix bug where LoRA network weights were not loaded to properly resume training
-
2022/12/30 (v19) update:
- support for LoRA network training in kohya_gui.py.
-
2022/12/23 (v18.8) update:
- Fix for conversion tool issue when the source was an sd1.x diffuser model
- Other minor code and GUI fix
-
2022/12/22 (v18.7) update:
- Merge dreambooth and finetune is a common GUI
- General bug fixes and code improvements
-
2022/12/21 (v18.6.1) update:
- fix issue with dataset balancing when the number of detected images in the folder is 0
-
2022/12/21 (v18.6) update:
- add optional GUI authentication support via:
python fine_tune.py --username=<name> --password=<password>
- add optional GUI authentication support via: