KohyaSS/train_network.py

363 lines
15 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import importlib
import argparse
import gc
import math
import os
from tqdm import tqdm
import torch
from accelerate.utils import set_seed
import diffusers
from diffusers import DDPMScheduler
import library.train_util as train_util
from library.train_util import DreamBoothDataset, FineTuningDataset
def collate_fn(examples):
return examples[0]
def train(args):
train_util.verify_training_args(args)
train_util.prepare_dataset_args(args, True)
cache_latents = args.cache_latents
use_dreambooth_method = args.in_json is None
if args.seed is not None:
set_seed(args.seed)
tokenizer = train_util.load_tokenizer(args)
# データセットを準備する
if use_dreambooth_method:
print("Use DreamBooth method.")
train_dataset = DreamBoothDataset(args.train_batch_size, args.train_data_dir, args.reg_data_dir,
tokenizer, args.max_token_length, args.caption_extension, args.shuffle_caption, args.keep_tokens,
args.resolution, args.enable_bucket, args.min_bucket_reso, args.max_bucket_reso, args.prior_loss_weight,
args.flip_aug, args.color_aug, args.face_crop_aug_range, args.random_crop, args.debug_dataset)
else:
print("Train with captions.")
train_dataset = FineTuningDataset(args.in_json, args.train_batch_size, args.train_data_dir,
tokenizer, args.max_token_length, args.shuffle_caption, args.keep_tokens,
args.resolution, args.enable_bucket, args.min_bucket_reso, args.max_bucket_reso,
args.flip_aug, args.color_aug, args.face_crop_aug_range, args.random_crop,
args.dataset_repeats, args.debug_dataset)
train_dataset.make_buckets()
if args.debug_dataset:
train_util.debug_dataset(train_dataset)
return
if len(train_dataset) == 0:
print("No data found. Please verify arguments / 画像がありません。引数指定を確認してください")
return
# acceleratorを準備する
print("prepare accelerator")
accelerator, unwrap_model = train_util.prepare_accelerator(args)
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, save_dtype = train_util.prepare_dtype(args)
# モデルを読み込む
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype)
# モデルに xformers とか memory efficient attention を組み込む
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
# 学習を準備する
if cache_latents:
vae.to(accelerator.device, dtype=weight_dtype)
vae.requires_grad_(False)
vae.eval()
with torch.no_grad():
train_dataset.cache_latents(vae)
vae.to("cpu")
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# prepare network
print("import network module:", args.network_module)
network_module = importlib.import_module(args.network_module)
net_kwargs = {}
if args.network_args is not None:
for net_arg in args.network_args:
key, value = net_arg.split('=')
net_kwargs[key] = value
network = network_module.create_network(1.0, args.network_dim, vae, text_encoder, unet, **net_kwargs)
if network is None:
return
if args.network_weights is not None:
print("load network weights from:", args.network_weights)
network.load_weights(args.network_weights)
train_unet = not args.network_train_text_encoder_only
train_text_encoder = not args.network_train_unet_only
network.apply_to(text_encoder, unet, train_text_encoder, train_unet)
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
text_encoder.gradient_checkpointing_enable()
network.enable_gradient_checkpointing() # may have no effect
# 学習に必要なクラスを準備する
print("prepare optimizer, data loader etc.")
# 8-bit Adamを使う
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです")
print("use 8-bit Adam optimizer")
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
trainable_params = network.prepare_optimizer_params(args.text_encoder_lr, args.unet_lr)
# betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略
optimizer = optimizer_class(trainable_params, lr=args.learning_rate)
# dataloaderを準備する
# DataLoaderのプロセス数0はメインプロセスになる
n_workers = min(8, os.cpu_count() - 1) # cpu_count-1 ただし最大8
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=1, shuffle=False, collate_fn=collate_fn, num_workers=n_workers)
# lr schedulerを用意する
lr_scheduler = diffusers.optimization.get_scheduler(
args.lr_scheduler, optimizer, num_warmup_steps=args.lr_warmup_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps)
# 実験的機能勾配も含めたfp16学習を行う モデル全体をfp16にする
if args.full_fp16:
assert args.mixed_precision == "fp16", "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
print("enable full fp16 training.")
network.to(weight_dtype)
# acceleratorがなんかよろしくやってくれるらしい
if train_unet and train_text_encoder:
unet, text_encoder, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, text_encoder, network, optimizer, train_dataloader, lr_scheduler)
elif train_unet:
unet, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, network, optimizer, train_dataloader, lr_scheduler)
elif train_text_encoder:
text_encoder, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
text_encoder, network, optimizer, train_dataloader, lr_scheduler)
else:
network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
network, optimizer, train_dataloader, lr_scheduler)
unet.requires_grad_(False)
unet.to(accelerator.device, dtype=weight_dtype)
text_encoder.requires_grad_(False)
text_encoder.to(accelerator.device, dtype=weight_dtype)
if args.gradient_checkpointing: # according to TI example in Diffusers, train is required
unet.train()
text_encoder.train()
else:
unet.eval()
text_encoder.eval()
network.prepare_grad_etc(text_encoder, unet)
if not cache_latents:
vae.requires_grad_(False)
vae.eval()
vae.to(accelerator.device, dtype=weight_dtype)
# 実験的機能勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
if args.full_fp16:
train_util.patch_accelerator_for_fp16_training(accelerator)
# resumeする
if args.resume is not None:
print(f"resume training from state: {args.resume}")
accelerator.load_state(args.resume)
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# 学習する
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
print("running training / 学習開始")
print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset.num_train_images}")
print(f" num reg images / 正則化画像の数: {train_dataset.num_reg_images}")
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
print(f" num epochs / epoch数: {num_train_epochs}")
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
global_step = 0
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
num_train_timesteps=1000, clip_sample=False)
if accelerator.is_main_process:
accelerator.init_trackers("network_train")
for epoch in range(num_train_epochs):
print(f"epoch {epoch+1}/{num_train_epochs}")
network.on_epoch_start(text_encoder, unet)
loss_total = 0
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(network):
with torch.no_grad():
if "latents" in batch and batch["latents"] is not None:
latents = batch["latents"].to(accelerator.device)
else:
# latentに変換
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
b_size = latents.shape[0]
with torch.set_grad_enabled(train_text_encoder):
# Get the text embedding for conditioning
input_ids = batch["input_ids"].to(accelerator.device)
encoder_hidden_states = train_util.get_hidden_states(args, input_ids, tokenizer, text_encoder, weight_dtype)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents, device=latents.device)
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Predict the noise residual
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
if args.v_parameterization:
# v-parameterization training
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
target = noise
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
loss = loss.mean([1, 2, 3])
loss_weights = batch["loss_weights"] # 各sampleごとのweight
loss = loss * loss_weights
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = network.get_trainable_params()
accelerator.clip_grad_norm_(params_to_clip, 1.0) # args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
current_loss = loss.detach().item()
if args.logging_dir is not None:
logs = {"loss": current_loss, "lr": lr_scheduler.get_last_lr()[0]}
accelerator.log(logs, step=global_step)
loss_total += current_loss
avr_loss = loss_total / (step+1)
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= args.max_train_steps:
break
if args.logging_dir is not None:
logs = {"epoch_loss": loss_total / len(train_dataloader)}
accelerator.log(logs, step=epoch+1)
accelerator.wait_for_everyone()
if args.save_every_n_epochs is not None:
model_name = train_util.DEFAULT_EPOCH_NAME if args.output_name is None else args.output_name
def save_func():
ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, epoch + 1) + '.' + args.save_model_as
ckpt_file = os.path.join(args.output_dir, ckpt_name)
print(f"saving checkpoint: {ckpt_file}")
unwrap_model(network).save_weights(ckpt_file, save_dtype)
def remove_old_func(old_epoch_no):
old_ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, old_epoch_no) + '.' + args.save_model_as
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
if os.path.exists(old_ckpt_file):
print(f"removing old checkpoint: {old_ckpt_file}")
os.remove(old_ckpt_file)
saving, remove_epoch_no = train_util.save_on_epoch_end(args, save_func, remove_old_func, epoch + 1, num_train_epochs)
if saving and args.save_state:
train_util.save_state_on_epoch_end(args, accelerator, model_name, epoch + 1, remove_epoch_no)
# end of epoch
is_main_process = accelerator.is_main_process
if is_main_process:
network = unwrap_model(network)
accelerator.end_training()
if args.save_state:
train_util.save_state_on_train_end(args, accelerator)
del accelerator # この後メモリを使うのでこれは消す
if is_main_process:
os.makedirs(args.output_dir, exist_ok=True)
model_name = train_util.DEFAULT_LAST_OUTPUT_NAME if args.output_name is None else args.output_name
ckpt_name = model_name + '.' + args.save_model_as
ckpt_file = os.path.join(args.output_dir, ckpt_name)
print(f"save trained model to {ckpt_file}")
network.save_weights(ckpt_file, save_dtype)
print("model saved.")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
train_util.add_sd_models_arguments(parser)
train_util.add_dataset_arguments(parser, True, True)
train_util.add_training_arguments(parser, True)
parser.add_argument("--save_model_as", type=str, default="pt", choices=[None, "ckpt", "pt", "safetensors"],
help="format to save the model (default is .pt) / モデル保存時の形式デフォルトはpt")
parser.add_argument("--unet_lr", type=float, default=None, help="learning rate for U-Net / U-Netの学習率")
parser.add_argument("--text_encoder_lr", type=float, default=None, help="learning rate for Text Encoder / Text Encoderの学習率")
parser.add_argument("--network_weights", type=str, default=None,
help="pretrained weights for network / 学習するネットワークの初期重み")
parser.add_argument("--network_module", type=str, default=None, help='network module to train / 学習対象のネットワークのモジュール')
parser.add_argument("--network_dim", type=int, default=None,
help='network dimensions (depends on each network) / モジュールの次元数(ネットワークにより定義は異なります)')
parser.add_argument("--network_args", type=str, default=None, nargs='*',
help='additional argmuments for network (key=value) / ネットワークへの追加の引数')
parser.add_argument("--network_train_unet_only", action="store_true", help="only training U-Net part / U-Net関連部分のみ学習する")
parser.add_argument("--network_train_text_encoder_only", action="store_true",
help="only training Text Encoder part / Text Encoder関連部分のみ学習する")
args = parser.parse_args()
train(args)