4c762e3abb
Fix Gradio issues Fix missing LoCon new GUI
778 lines
25 KiB
Python
778 lines
25 KiB
Python
from tkinter import filedialog, Tk
|
|
import os
|
|
import gradio as gr
|
|
from easygui import msgbox
|
|
import shutil
|
|
|
|
folder_symbol = '\U0001f4c2' # 📂
|
|
refresh_symbol = '\U0001f504' # 🔄
|
|
save_style_symbol = '\U0001f4be' # 💾
|
|
document_symbol = '\U0001F4C4' # 📄
|
|
|
|
|
|
def update_optimizer(my_data):
|
|
if my_data.get('use_8bit_adam', False):
|
|
my_data['optimizer'] = 'AdamW8bit'
|
|
my_data['use_8bit_adam'] = False
|
|
return my_data
|
|
|
|
|
|
def get_dir_and_file(file_path):
|
|
dir_path, file_name = os.path.split(file_path)
|
|
return (dir_path, file_name)
|
|
|
|
|
|
def has_ext_files(directory, extension):
|
|
# Iterate through all the files in the directory
|
|
for file in os.listdir(directory):
|
|
# If the file name ends with extension, return True
|
|
if file.endswith(extension):
|
|
return True
|
|
# If no extension files were found, return False
|
|
return False
|
|
|
|
|
|
def get_file_path(
|
|
file_path='', defaultextension='.json', extension_name='Config files'
|
|
):
|
|
current_file_path = file_path
|
|
# print(f'current file path: {current_file_path}')
|
|
|
|
initial_dir, initial_file = get_dir_and_file(file_path)
|
|
|
|
root = Tk()
|
|
root.wm_attributes('-topmost', 1)
|
|
root.withdraw()
|
|
file_path = filedialog.askopenfilename(
|
|
filetypes=(
|
|
(f'{extension_name}', f'{defaultextension}'),
|
|
('All files', '*'),
|
|
),
|
|
defaultextension=defaultextension,
|
|
initialfile=initial_file,
|
|
initialdir=initial_dir,
|
|
)
|
|
root.destroy()
|
|
|
|
if file_path == '':
|
|
file_path = current_file_path
|
|
|
|
return file_path
|
|
|
|
|
|
def get_any_file_path(file_path=''):
|
|
current_file_path = file_path
|
|
# print(f'current file path: {current_file_path}')
|
|
|
|
initial_dir, initial_file = get_dir_and_file(file_path)
|
|
|
|
root = Tk()
|
|
root.wm_attributes('-topmost', 1)
|
|
root.withdraw()
|
|
file_path = filedialog.askopenfilename(
|
|
initialdir=initial_dir,
|
|
initialfile=initial_file,
|
|
)
|
|
root.destroy()
|
|
|
|
if file_path == '':
|
|
file_path = current_file_path
|
|
|
|
return file_path
|
|
|
|
|
|
def remove_doublequote(file_path):
|
|
if file_path != None:
|
|
file_path = file_path.replace('"', '')
|
|
|
|
return file_path
|
|
|
|
|
|
def set_legacy_8bitadam(optimizer, use_8bit_adam):
|
|
if optimizer == 'AdamW8bit':
|
|
# use_8bit_adam = True
|
|
return gr.Dropdown.update(value=optimizer), gr.Checkbox.update(
|
|
value=True, interactive=False, visible=True
|
|
)
|
|
else:
|
|
# use_8bit_adam = False
|
|
return gr.Dropdown.update(value=optimizer), gr.Checkbox.update(
|
|
value=False, interactive=False, visible=True
|
|
)
|
|
|
|
|
|
def get_folder_path(folder_path=''):
|
|
current_folder_path = folder_path
|
|
|
|
initial_dir, initial_file = get_dir_and_file(folder_path)
|
|
|
|
root = Tk()
|
|
root.wm_attributes('-topmost', 1)
|
|
root.withdraw()
|
|
folder_path = filedialog.askdirectory(initialdir=initial_dir)
|
|
root.destroy()
|
|
|
|
if folder_path == '':
|
|
folder_path = current_folder_path
|
|
|
|
return folder_path
|
|
|
|
|
|
def get_saveasfile_path(
|
|
file_path='', defaultextension='.json', extension_name='Config files'
|
|
):
|
|
current_file_path = file_path
|
|
# print(f'current file path: {current_file_path}')
|
|
|
|
initial_dir, initial_file = get_dir_and_file(file_path)
|
|
|
|
root = Tk()
|
|
root.wm_attributes('-topmost', 1)
|
|
root.withdraw()
|
|
save_file_path = filedialog.asksaveasfile(
|
|
filetypes=(
|
|
(f'{extension_name}', f'{defaultextension}'),
|
|
('All files', '*'),
|
|
),
|
|
defaultextension=defaultextension,
|
|
initialdir=initial_dir,
|
|
initialfile=initial_file,
|
|
)
|
|
root.destroy()
|
|
|
|
# print(save_file_path)
|
|
|
|
if save_file_path == None:
|
|
file_path = current_file_path
|
|
else:
|
|
print(save_file_path.name)
|
|
file_path = save_file_path.name
|
|
|
|
# print(file_path)
|
|
|
|
return file_path
|
|
|
|
|
|
def get_saveasfilename_path(
|
|
file_path='', extensions='*', extension_name='Config files'
|
|
):
|
|
current_file_path = file_path
|
|
# print(f'current file path: {current_file_path}')
|
|
|
|
initial_dir, initial_file = get_dir_and_file(file_path)
|
|
|
|
root = Tk()
|
|
root.wm_attributes('-topmost', 1)
|
|
root.withdraw()
|
|
save_file_path = filedialog.asksaveasfilename(
|
|
filetypes=((f'{extension_name}', f'{extensions}'), ('All files', '*')),
|
|
defaultextension=extensions,
|
|
initialdir=initial_dir,
|
|
initialfile=initial_file,
|
|
)
|
|
root.destroy()
|
|
|
|
if save_file_path == '':
|
|
file_path = current_file_path
|
|
else:
|
|
# print(save_file_path)
|
|
file_path = save_file_path
|
|
|
|
return file_path
|
|
|
|
|
|
def add_pre_postfix(
|
|
folder='', prefix='', postfix='', caption_file_ext='.caption'
|
|
):
|
|
if not has_ext_files(folder, caption_file_ext):
|
|
msgbox(
|
|
f'No files with extension {caption_file_ext} were found in {folder}...'
|
|
)
|
|
return
|
|
|
|
if prefix == '' and postfix == '':
|
|
return
|
|
|
|
files = [f for f in os.listdir(folder) if f.endswith(caption_file_ext)]
|
|
if not prefix == '':
|
|
prefix = f'{prefix} '
|
|
if not postfix == '':
|
|
postfix = f' {postfix}'
|
|
|
|
for file in files:
|
|
with open(os.path.join(folder, file), 'r+') as f:
|
|
content = f.read()
|
|
content = content.rstrip()
|
|
f.seek(0, 0)
|
|
f.write(f'{prefix}{content}{postfix}')
|
|
f.close()
|
|
|
|
|
|
def find_replace(folder='', caption_file_ext='.caption', find='', replace=''):
|
|
print('Running caption find/replace')
|
|
if not has_ext_files(folder, caption_file_ext):
|
|
msgbox(
|
|
f'No files with extension {caption_file_ext} were found in {folder}...'
|
|
)
|
|
return
|
|
|
|
if find == '':
|
|
return
|
|
|
|
files = [f for f in os.listdir(folder) if f.endswith(caption_file_ext)]
|
|
for file in files:
|
|
with open(os.path.join(folder, file), 'r', errors='ignore') as f:
|
|
content = f.read()
|
|
f.close
|
|
content = content.replace(find, replace)
|
|
with open(os.path.join(folder, file), 'w') as f:
|
|
f.write(content)
|
|
f.close()
|
|
|
|
|
|
def color_aug_changed(color_aug):
|
|
if color_aug:
|
|
msgbox(
|
|
'Disabling "Cache latent" because "Color augmentation" has been selected...'
|
|
)
|
|
return gr.Checkbox.update(value=False, interactive=False)
|
|
else:
|
|
return gr.Checkbox.update(value=True, interactive=True)
|
|
|
|
|
|
def save_inference_file(output_dir, v2, v_parameterization, output_name):
|
|
# List all files in the directory
|
|
files = os.listdir(output_dir)
|
|
|
|
# Iterate over the list of files
|
|
for file in files:
|
|
# Check if the file starts with the value of output_name
|
|
if file.startswith(output_name):
|
|
# Check if it is a file or a directory
|
|
if os.path.isfile(os.path.join(output_dir, file)):
|
|
# Split the file name and extension
|
|
file_name, ext = os.path.splitext(file)
|
|
|
|
# Copy the v2-inference-v.yaml file to the current file, with a .yaml extension
|
|
if v2 and v_parameterization:
|
|
print(
|
|
f'Saving v2-inference-v.yaml as {output_dir}/{file_name}.yaml'
|
|
)
|
|
shutil.copy(
|
|
f'./v2_inference/v2-inference-v.yaml',
|
|
f'{output_dir}/{file_name}.yaml',
|
|
)
|
|
elif v2:
|
|
print(
|
|
f'Saving v2-inference.yaml as {output_dir}/{file_name}.yaml'
|
|
)
|
|
shutil.copy(
|
|
f'./v2_inference/v2-inference.yaml',
|
|
f'{output_dir}/{file_name}.yaml',
|
|
)
|
|
|
|
|
|
def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
|
|
# define a list of substrings to search for
|
|
substrings_v2 = [
|
|
'stabilityai/stable-diffusion-2-1-base',
|
|
'stabilityai/stable-diffusion-2-base',
|
|
]
|
|
|
|
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
|
|
if str(value) in substrings_v2:
|
|
print('SD v2 model detected. Setting --v2 parameter')
|
|
v2 = True
|
|
v_parameterization = False
|
|
|
|
return value, v2, v_parameterization
|
|
|
|
# define a list of substrings to search for v-objective
|
|
substrings_v_parameterization = [
|
|
'stabilityai/stable-diffusion-2-1',
|
|
'stabilityai/stable-diffusion-2',
|
|
]
|
|
|
|
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
|
|
if str(value) in substrings_v_parameterization:
|
|
print(
|
|
'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization'
|
|
)
|
|
v2 = True
|
|
v_parameterization = True
|
|
|
|
return value, v2, v_parameterization
|
|
|
|
# define a list of substrings to v1.x
|
|
substrings_v1_model = [
|
|
'CompVis/stable-diffusion-v1-4',
|
|
'runwayml/stable-diffusion-v1-5',
|
|
]
|
|
|
|
if str(value) in substrings_v1_model:
|
|
v2 = False
|
|
v_parameterization = False
|
|
|
|
return value, v2, v_parameterization
|
|
|
|
if value == 'custom':
|
|
value = ''
|
|
v2 = False
|
|
v_parameterization = False
|
|
|
|
return value, v2, v_parameterization
|
|
|
|
###
|
|
### Gradio common GUI section
|
|
###
|
|
|
|
|
|
def gradio_config():
|
|
with gr.Accordion('Configuration file', open=False):
|
|
with gr.Row():
|
|
button_open_config = gr.Button('Open 📂', elem_id='open_folder')
|
|
button_save_config = gr.Button('Save 💾', elem_id='open_folder')
|
|
button_save_as_config = gr.Button(
|
|
'Save as... 💾', elem_id='open_folder'
|
|
)
|
|
config_file_name = gr.Textbox(
|
|
label='',
|
|
placeholder="type the configuration file path or use the 'Open' button above to select it...",
|
|
interactive=True,
|
|
)
|
|
return (
|
|
button_open_config,
|
|
button_save_config,
|
|
button_save_as_config,
|
|
config_file_name,
|
|
)
|
|
|
|
|
|
def gradio_source_model():
|
|
with gr.Tab('Source model'):
|
|
# Define the input elements
|
|
with gr.Row():
|
|
pretrained_model_name_or_path = gr.Textbox(
|
|
label='Pretrained model name or path',
|
|
placeholder='enter the path to custom model or name of pretrained model',
|
|
value='runwayml/stable-diffusion-v1-5'
|
|
)
|
|
pretrained_model_name_or_path_file = gr.Button(
|
|
document_symbol, elem_id='open_folder_small'
|
|
)
|
|
pretrained_model_name_or_path_file.click(
|
|
get_any_file_path,
|
|
inputs=pretrained_model_name_or_path,
|
|
outputs=pretrained_model_name_or_path,
|
|
)
|
|
pretrained_model_name_or_path_folder = gr.Button(
|
|
folder_symbol, elem_id='open_folder_small'
|
|
)
|
|
pretrained_model_name_or_path_folder.click(
|
|
get_folder_path,
|
|
inputs=pretrained_model_name_or_path,
|
|
outputs=pretrained_model_name_or_path,
|
|
)
|
|
model_list = gr.Dropdown(
|
|
label='Model Quick Pick',
|
|
choices=[
|
|
'custom',
|
|
'stabilityai/stable-diffusion-2-1-base',
|
|
'stabilityai/stable-diffusion-2-base',
|
|
'stabilityai/stable-diffusion-2-1',
|
|
'stabilityai/stable-diffusion-2',
|
|
'runwayml/stable-diffusion-v1-5',
|
|
'CompVis/stable-diffusion-v1-4',
|
|
],
|
|
value='runwayml/stable-diffusion-v1-5'
|
|
)
|
|
save_model_as = gr.Dropdown(
|
|
label='Save trained model as',
|
|
choices=[
|
|
'same as source model',
|
|
'ckpt',
|
|
'diffusers',
|
|
'diffusers_safetensors',
|
|
'safetensors',
|
|
],
|
|
value='safetensors',
|
|
)
|
|
|
|
with gr.Row():
|
|
v2 = gr.Checkbox(label='v2', value=False)
|
|
v_parameterization = gr.Checkbox(
|
|
label='v_parameterization', value=False
|
|
)
|
|
model_list.change(
|
|
set_pretrained_model_name_or_path_input,
|
|
inputs=[model_list, v2, v_parameterization],
|
|
outputs=[
|
|
pretrained_model_name_or_path,
|
|
v2,
|
|
v_parameterization,
|
|
],
|
|
)
|
|
return (
|
|
pretrained_model_name_or_path,
|
|
v2,
|
|
v_parameterization,
|
|
save_model_as,
|
|
model_list,
|
|
)
|
|
|
|
|
|
def gradio_training(
|
|
learning_rate_value='1e-6',
|
|
lr_scheduler_value='constant',
|
|
lr_warmup_value='0',
|
|
):
|
|
with gr.Row():
|
|
train_batch_size = gr.Slider(
|
|
minimum=1,
|
|
maximum=64,
|
|
label='Train batch size',
|
|
value=1,
|
|
step=1,
|
|
)
|
|
epoch = gr.Textbox(label='Epoch', value=1)
|
|
save_every_n_epochs = gr.Textbox(label='Save every N epochs', value=1)
|
|
caption_extension = gr.Textbox(
|
|
label='Caption Extension',
|
|
placeholder='(Optional) Extension for caption files. default: .caption',
|
|
)
|
|
with gr.Row():
|
|
mixed_precision = gr.Dropdown(
|
|
label='Mixed precision',
|
|
choices=[
|
|
'no',
|
|
'fp16',
|
|
'bf16',
|
|
],
|
|
value='fp16',
|
|
)
|
|
save_precision = gr.Dropdown(
|
|
label='Save precision',
|
|
choices=[
|
|
'float',
|
|
'fp16',
|
|
'bf16',
|
|
],
|
|
value='fp16',
|
|
)
|
|
num_cpu_threads_per_process = gr.Slider(
|
|
minimum=1,
|
|
maximum=os.cpu_count(),
|
|
step=1,
|
|
label='Number of CPU threads per core',
|
|
value=2,
|
|
)
|
|
seed = gr.Textbox(label='Seed', placeholder='(Optional) eg:1234')
|
|
cache_latents = gr.Checkbox(label='Cache latent', value=True)
|
|
with gr.Row():
|
|
learning_rate = gr.Textbox(
|
|
label='Learning rate', value=learning_rate_value
|
|
)
|
|
lr_scheduler = gr.Dropdown(
|
|
label='LR Scheduler',
|
|
choices=[
|
|
'adafactor',
|
|
'constant',
|
|
'constant_with_warmup',
|
|
'cosine',
|
|
'cosine_with_restarts',
|
|
'linear',
|
|
'polynomial',
|
|
],
|
|
value=lr_scheduler_value,
|
|
)
|
|
lr_warmup = gr.Textbox(
|
|
label='LR warmup (% of steps)', value=lr_warmup_value
|
|
)
|
|
optimizer = gr.Dropdown(
|
|
label='Optimizer',
|
|
choices=[
|
|
'AdamW',
|
|
'AdamW8bit',
|
|
'Adafactor',
|
|
'DAdaptation',
|
|
'Lion',
|
|
'SGDNesterov',
|
|
'SGDNesterov8bit',
|
|
],
|
|
value='AdamW8bit',
|
|
interactive=True,
|
|
)
|
|
with gr.Row():
|
|
optimizer_args = gr.Textbox(
|
|
label='Optimizer extra arguments',
|
|
placeholder='(Optional) eg: relative_step=True scale_parameter=True warmup_init=True',
|
|
)
|
|
return (
|
|
learning_rate,
|
|
lr_scheduler,
|
|
lr_warmup,
|
|
train_batch_size,
|
|
epoch,
|
|
save_every_n_epochs,
|
|
mixed_precision,
|
|
save_precision,
|
|
num_cpu_threads_per_process,
|
|
seed,
|
|
caption_extension,
|
|
cache_latents,
|
|
optimizer,
|
|
optimizer_args,
|
|
)
|
|
|
|
|
|
def run_cmd_training(**kwargs):
|
|
options = [
|
|
f' --learning_rate="{kwargs.get("learning_rate", "")}"'
|
|
if kwargs.get('learning_rate')
|
|
else '',
|
|
f' --lr_scheduler="{kwargs.get("lr_scheduler", "")}"'
|
|
if kwargs.get('lr_scheduler')
|
|
else '',
|
|
f' --lr_warmup_steps="{kwargs.get("lr_warmup_steps", "")}"'
|
|
if kwargs.get('lr_warmup_steps')
|
|
else '',
|
|
f' --train_batch_size="{kwargs.get("train_batch_size", "")}"'
|
|
if kwargs.get('train_batch_size')
|
|
else '',
|
|
f' --max_train_steps="{kwargs.get("max_train_steps", "")}"'
|
|
if kwargs.get('max_train_steps')
|
|
else '',
|
|
f' --save_every_n_epochs="{kwargs.get("save_every_n_epochs", "")}"'
|
|
if kwargs.get('save_every_n_epochs')
|
|
else '',
|
|
f' --mixed_precision="{kwargs.get("mixed_precision", "")}"'
|
|
if kwargs.get('mixed_precision')
|
|
else '',
|
|
f' --save_precision="{kwargs.get("save_precision", "")}"'
|
|
if kwargs.get('save_precision')
|
|
else '',
|
|
f' --seed="{kwargs.get("seed", "")}"' if kwargs.get('seed') else '',
|
|
f' --caption_extension="{kwargs.get("caption_extension", "")}"'
|
|
if kwargs.get('caption_extension')
|
|
else '',
|
|
' --cache_latents' if kwargs.get('cache_latents') else '',
|
|
# ' --use_lion_optimizer' if kwargs.get('optimizer') == 'Lion' else '',
|
|
f' --optimizer_type="{kwargs.get("optimizer", "AdamW")}"',
|
|
f' --optimizer_args {kwargs.get("optimizer_args", "")}'
|
|
if not kwargs.get('optimizer_args') == ''
|
|
else '',
|
|
]
|
|
run_cmd = ''.join(options)
|
|
return run_cmd
|
|
|
|
|
|
# # This function takes a dictionary of keyword arguments and returns a string that can be used to run a command-line training script
|
|
# def run_cmd_training(**kwargs):
|
|
# arg_map = {
|
|
# 'learning_rate': ' --learning_rate="{}"',
|
|
# 'lr_scheduler': ' --lr_scheduler="{}"',
|
|
# 'lr_warmup_steps': ' --lr_warmup_steps="{}"',
|
|
# 'train_batch_size': ' --train_batch_size="{}"',
|
|
# 'max_train_steps': ' --max_train_steps="{}"',
|
|
# 'save_every_n_epochs': ' --save_every_n_epochs="{}"',
|
|
# 'mixed_precision': ' --mixed_precision="{}"',
|
|
# 'save_precision': ' --save_precision="{}"',
|
|
# 'seed': ' --seed="{}"',
|
|
# 'caption_extension': ' --caption_extension="{}"',
|
|
# 'cache_latents': ' --cache_latents',
|
|
# 'optimizer': ' --use_lion_optimizer' if kwargs.get('optimizer') == 'Lion' else '',
|
|
# }
|
|
|
|
# options = [arg_map[key].format(value) for key, value in kwargs.items() if key in arg_map and value]
|
|
|
|
# cmd = ''.join(options)
|
|
|
|
# return cmd
|
|
|
|
|
|
def gradio_advanced_training():
|
|
with gr.Row():
|
|
keep_tokens = gr.Slider(
|
|
label='Keep n tokens', value='0', minimum=0, maximum=32, step=1
|
|
)
|
|
clip_skip = gr.Slider(
|
|
label='Clip skip', value='1', minimum=1, maximum=12, step=1
|
|
)
|
|
max_token_length = gr.Dropdown(
|
|
label='Max Token Length',
|
|
choices=[
|
|
'75',
|
|
'150',
|
|
'225',
|
|
],
|
|
value='75',
|
|
)
|
|
full_fp16 = gr.Checkbox(
|
|
label='Full fp16 training (experimental)', value=False
|
|
)
|
|
with gr.Row():
|
|
gradient_checkpointing = gr.Checkbox(
|
|
label='Gradient checkpointing', value=False
|
|
)
|
|
shuffle_caption = gr.Checkbox(label='Shuffle caption', value=False)
|
|
persistent_data_loader_workers = gr.Checkbox(
|
|
label='Persistent data loader', value=False
|
|
)
|
|
mem_eff_attn = gr.Checkbox(
|
|
label='Memory efficient attention', value=False
|
|
)
|
|
with gr.Row():
|
|
# This use_8bit_adam element should be removed in a future release as it is no longer used
|
|
use_8bit_adam = gr.Checkbox(
|
|
label='Use 8bit adam', value=False, visible=False
|
|
)
|
|
xformers = gr.Checkbox(label='Use xformers', value=True)
|
|
color_aug = gr.Checkbox(label='Color augmentation', value=False)
|
|
flip_aug = gr.Checkbox(label='Flip augmentation', value=False)
|
|
with gr.Row():
|
|
bucket_no_upscale = gr.Checkbox(
|
|
label="Don't upscale bucket resolution", value=True
|
|
)
|
|
bucket_reso_steps = gr.Number(
|
|
label='Bucket resolution steps', value=64
|
|
)
|
|
random_crop = gr.Checkbox(
|
|
label='Random crop instead of center crop', value=False
|
|
)
|
|
noise_offset = gr.Textbox(
|
|
label='Noise offset (0 - 1)', placeholder='(Oprional) eg: 0.1'
|
|
)
|
|
|
|
with gr.Row():
|
|
caption_dropout_every_n_epochs = gr.Number(
|
|
label='Dropout caption every n epochs', value=0
|
|
)
|
|
caption_dropout_rate = gr.Slider(
|
|
label='Rate of caption dropout', value=0, minimum=0, maximum=1
|
|
)
|
|
with gr.Row():
|
|
save_state = gr.Checkbox(label='Save training state', value=False)
|
|
resume = gr.Textbox(
|
|
label='Resume from saved training state',
|
|
placeholder='path to "last-state" state folder to resume from',
|
|
)
|
|
resume_button = gr.Button('📂', elem_id='open_folder_small')
|
|
resume_button.click(get_folder_path, outputs=resume)
|
|
max_train_epochs = gr.Textbox(
|
|
label='Max train epoch',
|
|
placeholder='(Optional) Override number of epoch',
|
|
)
|
|
max_data_loader_n_workers = gr.Textbox(
|
|
label='Max num workers for DataLoader',
|
|
placeholder='(Optional) Override number of epoch. Default: 8',
|
|
)
|
|
return (
|
|
use_8bit_adam,
|
|
xformers,
|
|
full_fp16,
|
|
gradient_checkpointing,
|
|
shuffle_caption,
|
|
color_aug,
|
|
flip_aug,
|
|
clip_skip,
|
|
mem_eff_attn,
|
|
save_state,
|
|
resume,
|
|
max_token_length,
|
|
max_train_epochs,
|
|
max_data_loader_n_workers,
|
|
keep_tokens,
|
|
persistent_data_loader_workers,
|
|
bucket_no_upscale,
|
|
random_crop,
|
|
bucket_reso_steps,
|
|
caption_dropout_every_n_epochs,
|
|
caption_dropout_rate,
|
|
noise_offset,
|
|
)
|
|
|
|
|
|
def run_cmd_advanced_training(**kwargs):
|
|
options = [
|
|
f' --max_train_epochs="{kwargs.get("max_train_epochs", "")}"'
|
|
if kwargs.get('max_train_epochs')
|
|
else '',
|
|
f' --max_data_loader_n_workers="{kwargs.get("max_data_loader_n_workers", "")}"'
|
|
if kwargs.get('max_data_loader_n_workers')
|
|
else '',
|
|
f' --max_token_length={kwargs.get("max_token_length", "")}'
|
|
if int(kwargs.get('max_token_length', 75)) > 75
|
|
else '',
|
|
f' --clip_skip={kwargs.get("clip_skip", "")}'
|
|
if int(kwargs.get('clip_skip', 1)) > 1
|
|
else '',
|
|
f' --resume="{kwargs.get("resume", "")}"'
|
|
if kwargs.get('resume')
|
|
else '',
|
|
f' --keep_tokens="{kwargs.get("keep_tokens", "")}"'
|
|
if int(kwargs.get('keep_tokens', 0)) > 0
|
|
else '',
|
|
f' --caption_dropout_every_n_epochs="{kwargs.get("caption_dropout_every_n_epochs", "")}"'
|
|
if int(kwargs.get('caption_dropout_every_n_epochs', 0)) > 0
|
|
else '',
|
|
f' --caption_dropout_rate="{kwargs.get("caption_dropout_rate", "")}"'
|
|
if float(kwargs.get('caption_dropout_rate', 0)) > 0
|
|
else '',
|
|
f' --bucket_reso_steps={int(kwargs.get("bucket_reso_steps", 1))}'
|
|
if int(kwargs.get('bucket_reso_steps', 64)) >= 1
|
|
else '',
|
|
' --save_state' if kwargs.get('save_state') else '',
|
|
' --mem_eff_attn' if kwargs.get('mem_eff_attn') else '',
|
|
' --color_aug' if kwargs.get('color_aug') else '',
|
|
' --flip_aug' if kwargs.get('flip_aug') else '',
|
|
' --shuffle_caption' if kwargs.get('shuffle_caption') else '',
|
|
' --gradient_checkpointing'
|
|
if kwargs.get('gradient_checkpointing')
|
|
else '',
|
|
' --full_fp16' if kwargs.get('full_fp16') else '',
|
|
' --xformers' if kwargs.get('xformers') else '',
|
|
' --use_8bit_adam' if kwargs.get('use_8bit_adam') else '',
|
|
' --persistent_data_loader_workers'
|
|
if kwargs.get('persistent_data_loader_workers')
|
|
else '',
|
|
' --bucket_no_upscale' if kwargs.get('bucket_no_upscale') else '',
|
|
' --random_crop' if kwargs.get('random_crop') else '',
|
|
f' --noise_offset={float(kwargs.get("noise_offset", 0))}'
|
|
if not kwargs.get('noise_offset', '') == ''
|
|
else '',
|
|
]
|
|
run_cmd = ''.join(options)
|
|
return run_cmd
|
|
|
|
|
|
# def run_cmd_advanced_training(**kwargs):
|
|
# arg_map = {
|
|
# 'max_train_epochs': ' --max_train_epochs="{}"',
|
|
# 'max_data_loader_n_workers': ' --max_data_loader_n_workers="{}"',
|
|
# 'max_token_length': ' --max_token_length={}' if int(kwargs.get('max_token_length', 75)) > 75 else '',
|
|
# 'clip_skip': ' --clip_skip={}' if int(kwargs.get('clip_skip', 1)) > 1 else '',
|
|
# 'resume': ' --resume="{}"',
|
|
# 'keep_tokens': ' --keep_tokens="{}"' if int(kwargs.get('keep_tokens', 0)) > 0 else '',
|
|
# 'caption_dropout_every_n_epochs': ' --caption_dropout_every_n_epochs="{}"' if int(kwargs.get('caption_dropout_every_n_epochs', 0)) > 0 else '',
|
|
# 'caption_dropout_rate': ' --caption_dropout_rate="{}"' if float(kwargs.get('caption_dropout_rate', 0)) > 0 else '',
|
|
# 'bucket_reso_steps': ' --bucket_reso_steps={:d}' if int(kwargs.get('bucket_reso_steps', 64)) >= 1 else '',
|
|
# 'save_state': ' --save_state',
|
|
# 'mem_eff_attn': ' --mem_eff_attn',
|
|
# 'color_aug': ' --color_aug',
|
|
# 'flip_aug': ' --flip_aug',
|
|
# 'shuffle_caption': ' --shuffle_caption',
|
|
# 'gradient_checkpointing': ' --gradient_checkpointing',
|
|
# 'full_fp16': ' --full_fp16',
|
|
# 'xformers': ' --xformers',
|
|
# 'use_8bit_adam': ' --use_8bit_adam',
|
|
# 'persistent_data_loader_workers': ' --persistent_data_loader_workers',
|
|
# 'bucket_no_upscale': ' --bucket_no_upscale',
|
|
# 'random_crop': ' --random_crop',
|
|
# }
|
|
|
|
# options = [arg_map[key].format(value) for key, value in kwargs.items() if key in arg_map and value]
|
|
|
|
# cmd = ''.join(options)
|
|
|
|
# return cmd
|