8d559ded18
- ``--bucket_reso_steps`` and ``--bucket_no_upscale`` options are added to training scripts (fine tuning, DreamBooth, LoRA and Textual Inversion) and ``prepare_buckets_latents.py``. - ``--bucket_reso_steps`` takes the steps for buckets in aspect ratio bucketing. Default is 64, same as before. - Any value greater than or equal to 1 can be specified; 64 is highly recommended and a value divisible by 8 is recommended. - If less than 64 is specified, padding will occur within U-Net. The result is unknown. - If you specify a value that is not divisible by 8, it will be truncated to divisible by 8 inside VAE, because the size of the latent is 1/8 of the image size. - If ``--bucket_no_upscale`` option is specified, images smaller than the bucket size will be processed without upscaling. - Internally, a bucket smaller than the image size is created (for example, if the image is 300x300 and ``bucket_reso_steps=64``, the bucket is 256x256). The image will be trimmed. - Implementation of [#130](https://github.com/kohya-ss/sd-scripts/issues/130). - Images with an area larger than the maximum size specified by ``--resolution`` are downsampled to the max bucket size. - Now the number of data in each batch is limited to the number of actual images (not duplicated). Because a certain bucket may contain smaller number of actual images, so the batch may contain same (duplicated) images. - ``--random_crop`` now also works with buckets enabled. - Instead of always cropping the center of the image, the image is shifted left, right, up, and down to be used as the training data. This is expected to train to the edges of the image. - Implementation of discussion [#34](https://github.com/kohya-ss/sd-scripts/discussions/34).
1721 lines
76 KiB
Python
1721 lines
76 KiB
Python
# common functions for training
|
||
|
||
import argparse
|
||
import json
|
||
import shutil
|
||
import time
|
||
from typing import Dict, List, NamedTuple, Tuple
|
||
from accelerate import Accelerator
|
||
from torch.autograd.function import Function
|
||
import glob
|
||
import math
|
||
import os
|
||
import random
|
||
import hashlib
|
||
from io import BytesIO
|
||
|
||
from tqdm import tqdm
|
||
import torch
|
||
from torchvision import transforms
|
||
from transformers import CLIPTokenizer
|
||
import diffusers
|
||
from diffusers import DDPMScheduler, StableDiffusionPipeline
|
||
import albumentations as albu
|
||
import numpy as np
|
||
from PIL import Image
|
||
import cv2
|
||
from einops import rearrange
|
||
from torch import einsum
|
||
import safetensors.torch
|
||
|
||
import library.model_util as model_util
|
||
|
||
# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う
|
||
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
|
||
V2_STABLE_DIFFUSION_PATH = "stabilityai/stable-diffusion-2" # ここからtokenizerだけ使う v2とv2.1はtokenizer仕様は同じ
|
||
|
||
# checkpointファイル名
|
||
EPOCH_STATE_NAME = "{}-{:06d}-state"
|
||
EPOCH_FILE_NAME = "{}-{:06d}"
|
||
EPOCH_DIFFUSERS_DIR_NAME = "{}-{:06d}"
|
||
LAST_STATE_NAME = "{}-state"
|
||
DEFAULT_EPOCH_NAME = "epoch"
|
||
DEFAULT_LAST_OUTPUT_NAME = "last"
|
||
|
||
# region dataset
|
||
|
||
IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", ".webp", ".bmp"]
|
||
# , ".PNG", ".JPG", ".JPEG", ".WEBP", ".BMP"] # Linux?
|
||
|
||
|
||
class ImageInfo():
|
||
def __init__(self, image_key: str, num_repeats: int, caption: str, is_reg: bool, absolute_path: str) -> None:
|
||
self.image_key: str = image_key
|
||
self.num_repeats: int = num_repeats
|
||
self.caption: str = caption
|
||
self.is_reg: bool = is_reg
|
||
self.absolute_path: str = absolute_path
|
||
self.image_size: Tuple[int, int] = None
|
||
self.resized_size: Tuple[int, int] = None
|
||
self.bucket_reso: Tuple[int, int] = None
|
||
self.latents: torch.Tensor = None
|
||
self.latents_flipped: torch.Tensor = None
|
||
self.latents_npz: str = None
|
||
self.latents_npz_flipped: str = None
|
||
|
||
|
||
class BucketManager():
|
||
def __init__(self, no_upscale, max_reso, min_size, max_size, reso_steps) -> None:
|
||
self.no_upscale = no_upscale
|
||
if max_reso is None:
|
||
self.max_reso = None
|
||
self.max_area = None
|
||
else:
|
||
self.max_reso = max_reso
|
||
self.max_area = max_reso[0] * max_reso[1]
|
||
self.min_size = min_size
|
||
self.max_size = max_size
|
||
self.reso_steps = reso_steps
|
||
|
||
self.resos = []
|
||
self.reso_to_id = {}
|
||
self.buckets = [] # 前処理時は (image_key, image)、学習時は image_key
|
||
|
||
def add_image(self, reso, image):
|
||
bucket_id = self.reso_to_id[reso]
|
||
self.buckets[bucket_id].append(image)
|
||
|
||
def shuffle(self):
|
||
for bucket in self.buckets:
|
||
random.shuffle(bucket)
|
||
|
||
def sort(self):
|
||
# 解像度順にソートする(表示時、メタデータ格納時の見栄えをよくするためだけ)。bucketsも入れ替えてreso_to_idも振り直す
|
||
sorted_resos = self.resos.copy()
|
||
sorted_resos.sort()
|
||
|
||
sorted_buckets = []
|
||
sorted_reso_to_id = {}
|
||
for i, reso in enumerate(sorted_resos):
|
||
bucket_id = self.reso_to_id[reso]
|
||
sorted_buckets.append(self.buckets[bucket_id])
|
||
sorted_reso_to_id[reso] = i
|
||
|
||
self.resos = sorted_resos
|
||
self.buckets = sorted_buckets
|
||
self.reso_to_id = sorted_reso_to_id
|
||
|
||
def make_buckets(self):
|
||
resos = model_util.make_bucket_resolutions(self.max_reso, self.min_size, self.max_size, self.reso_steps)
|
||
self.set_predefined_resos(resos)
|
||
|
||
def set_predefined_resos(self, resos):
|
||
# 規定サイズから選ぶ場合の解像度、aspect ratioの情報を格納しておく
|
||
self.predefined_resos = resos.copy()
|
||
self.predefined_resos_set = set(resos)
|
||
self.predifined_aspect_ratios = np.array([w / h for w, h in resos])
|
||
|
||
def add_if_new_reso(self, reso):
|
||
if reso not in self.reso_to_id:
|
||
bucket_id = len(self.resos)
|
||
self.reso_to_id[reso] = bucket_id
|
||
self.resos.append(reso)
|
||
self.buckets.append([])
|
||
# print(reso, bucket_id, len(self.buckets))
|
||
|
||
def round_to_steps(self, x):
|
||
x = int(x + .5)
|
||
return x - x % self.reso_steps
|
||
|
||
def select_bucket(self, image_width, image_height):
|
||
aspect_ratio = image_width / image_height
|
||
if not self.no_upscale:
|
||
# 同じaspect ratioがあるかもしれないので(fine tuningで、no_upscale=Trueで前処理した場合)、解像度が同じものを優先する
|
||
reso = (image_width, image_height)
|
||
if reso in self.predefined_resos_set:
|
||
pass
|
||
else:
|
||
ar_errors = self.predifined_aspect_ratios - aspect_ratio
|
||
predefined_bucket_id = np.abs(ar_errors).argmin() # 当該解像度以外でaspect ratio errorが最も少ないもの
|
||
reso = self.predefined_resos[predefined_bucket_id]
|
||
|
||
ar_reso = reso[0] / reso[1]
|
||
if aspect_ratio > ar_reso: # 横が長い→縦を合わせる
|
||
scale = reso[1] / image_height
|
||
else:
|
||
scale = reso[0] / image_width
|
||
|
||
resized_size = (int(image_width * scale + .5), int(image_height * scale + .5))
|
||
# print("use predef", image_width, image_height, reso, resized_size)
|
||
else:
|
||
if image_width * image_height > self.max_area:
|
||
# 画像が大きすぎるのでアスペクト比を保ったまま縮小することを前提にbucketを決める
|
||
resized_width = math.sqrt(self.max_area * aspect_ratio)
|
||
resized_height = self.max_area / resized_width
|
||
assert abs(resized_width / resized_height - aspect_ratio) < 1e-2, "aspect is illegal"
|
||
|
||
# リサイズ後の短辺または長辺をreso_steps単位にする:aspect ratioの差が少ないほうを選ぶ
|
||
# 元のbucketingと同じロジック
|
||
b_width_rounded = self.round_to_steps(resized_width)
|
||
b_height_in_wr = self.round_to_steps(b_width_rounded / aspect_ratio)
|
||
ar_width_rounded = b_width_rounded / b_height_in_wr
|
||
|
||
b_height_rounded = self.round_to_steps(resized_height)
|
||
b_width_in_hr = self.round_to_steps(b_height_rounded * aspect_ratio)
|
||
ar_height_rounded = b_width_in_hr / b_height_rounded
|
||
|
||
# print(b_width_rounded, b_height_in_wr, ar_width_rounded)
|
||
# print(b_width_in_hr, b_height_rounded, ar_height_rounded)
|
||
|
||
if abs(ar_width_rounded - aspect_ratio) < abs(ar_height_rounded - aspect_ratio):
|
||
resized_size = (b_width_rounded, int(b_width_rounded / aspect_ratio + .5))
|
||
else:
|
||
resized_size = (int(b_height_rounded * aspect_ratio + .5), b_height_rounded)
|
||
# print(resized_size)
|
||
else:
|
||
resized_size = (image_width, image_height) # リサイズは不要
|
||
|
||
# 画像のサイズ未満をbucketのサイズとする(paddingせずにcroppingする)
|
||
bucket_width = resized_size[0] - resized_size[0] % self.reso_steps
|
||
bucket_height = resized_size[1] - resized_size[1] % self.reso_steps
|
||
# print("use arbitrary", image_width, image_height, resized_size, bucket_width, bucket_height)
|
||
|
||
reso = (bucket_width, bucket_height)
|
||
|
||
self.add_if_new_reso(reso)
|
||
|
||
ar_error = (reso[0] / reso[1]) - aspect_ratio
|
||
return reso, resized_size, ar_error
|
||
|
||
|
||
class BucketBatchIndex(NamedTuple):
|
||
bucket_index: int
|
||
bucket_batch_size: int
|
||
batch_index: int
|
||
|
||
|
||
class BaseDataset(torch.utils.data.Dataset):
|
||
def __init__(self, tokenizer, max_token_length, shuffle_caption, shuffle_keep_tokens, resolution, flip_aug: bool, color_aug: bool, face_crop_aug_range, random_crop, debug_dataset: bool) -> None:
|
||
super().__init__()
|
||
self.tokenizer: CLIPTokenizer = tokenizer
|
||
self.max_token_length = max_token_length
|
||
self.shuffle_caption = shuffle_caption
|
||
self.shuffle_keep_tokens = shuffle_keep_tokens
|
||
# width/height is used when enable_bucket==False
|
||
self.width, self.height = (None, None) if resolution is None else resolution
|
||
self.face_crop_aug_range = face_crop_aug_range
|
||
self.flip_aug = flip_aug
|
||
self.color_aug = color_aug
|
||
self.debug_dataset = debug_dataset
|
||
self.random_crop = random_crop
|
||
self.token_padding_disabled = False
|
||
self.dataset_dirs_info = {}
|
||
self.reg_dataset_dirs_info = {}
|
||
self.tag_frequency = {}
|
||
|
||
self.enable_bucket = False
|
||
self.bucket_manager: BucketManager = None # not initialized
|
||
self.min_bucket_reso = None
|
||
self.max_bucket_reso = None
|
||
self.bucket_reso_steps = None
|
||
self.bucket_no_upscale = None
|
||
self.bucket_info = None # for metadata
|
||
|
||
self.tokenizer_max_length = self.tokenizer.model_max_length if max_token_length is None else max_token_length + 2
|
||
|
||
# augmentation
|
||
flip_p = 0.5 if flip_aug else 0.0
|
||
if color_aug:
|
||
# わりと弱めの色合いaugmentation:brightness/contrastあたりは画像のpixel valueの最大値・最小値を変えてしまうのでよくないのではという想定でgamma/hueあたりを触る
|
||
self.aug = albu.Compose([
|
||
albu.OneOf([
|
||
albu.HueSaturationValue(8, 0, 0, p=.5),
|
||
albu.RandomGamma((95, 105), p=.5),
|
||
], p=.33),
|
||
albu.HorizontalFlip(p=flip_p)
|
||
], p=1.)
|
||
elif flip_aug:
|
||
self.aug = albu.Compose([
|
||
albu.HorizontalFlip(p=flip_p)
|
||
], p=1.)
|
||
else:
|
||
self.aug = None
|
||
|
||
self.image_transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ])
|
||
|
||
self.image_data: Dict[str, ImageInfo] = {}
|
||
|
||
self.replacements = {}
|
||
|
||
def set_tag_frequency(self, dir_name, captions):
|
||
frequency_for_dir = self.tag_frequency.get(dir_name, {})
|
||
self.tag_frequency[dir_name] = frequency_for_dir
|
||
for caption in captions:
|
||
for tag in caption.split(","):
|
||
if tag and not tag.isspace():
|
||
tag = tag.lower()
|
||
frequency = frequency_for_dir.get(tag, 0)
|
||
frequency_for_dir[tag] = frequency + 1
|
||
|
||
def disable_token_padding(self):
|
||
self.token_padding_disabled = True
|
||
|
||
def add_replacement(self, str_from, str_to):
|
||
self.replacements[str_from] = str_to
|
||
|
||
def process_caption(self, caption):
|
||
if self.shuffle_caption:
|
||
tokens = caption.strip().split(",")
|
||
if self.shuffle_keep_tokens is None:
|
||
random.shuffle(tokens)
|
||
else:
|
||
if len(tokens) > self.shuffle_keep_tokens:
|
||
keep_tokens = tokens[:self.shuffle_keep_tokens]
|
||
tokens = tokens[self.shuffle_keep_tokens:]
|
||
random.shuffle(tokens)
|
||
tokens = keep_tokens + tokens
|
||
caption = ",".join(tokens).strip()
|
||
|
||
for str_from, str_to in self.replacements.items():
|
||
if str_from == "":
|
||
# replace all
|
||
if type(str_to) == list:
|
||
caption = random.choice(str_to)
|
||
else:
|
||
caption = str_to
|
||
else:
|
||
caption = caption.replace(str_from, str_to)
|
||
|
||
return caption
|
||
|
||
def get_input_ids(self, caption):
|
||
input_ids = self.tokenizer(caption, padding="max_length", truncation=True,
|
||
max_length=self.tokenizer_max_length, return_tensors="pt").input_ids
|
||
|
||
if self.tokenizer_max_length > self.tokenizer.model_max_length:
|
||
input_ids = input_ids.squeeze(0)
|
||
iids_list = []
|
||
if self.tokenizer.pad_token_id == self.tokenizer.eos_token_id:
|
||
# v1
|
||
# 77以上の時は "<BOS> .... <EOS> <EOS> <EOS>" でトータル227とかになっているので、"<BOS>...<EOS>"の三連に変換する
|
||
# 1111氏のやつは , で区切る、とかしているようだが とりあえず単純に
|
||
for i in range(1, self.tokenizer_max_length - self.tokenizer.model_max_length + 2, self.tokenizer.model_max_length - 2): # (1, 152, 75)
|
||
ids_chunk = (input_ids[0].unsqueeze(0),
|
||
input_ids[i:i + self.tokenizer.model_max_length - 2],
|
||
input_ids[-1].unsqueeze(0))
|
||
ids_chunk = torch.cat(ids_chunk)
|
||
iids_list.append(ids_chunk)
|
||
else:
|
||
# v2
|
||
# 77以上の時は "<BOS> .... <EOS> <PAD> <PAD>..." でトータル227とかになっているので、"<BOS>...<EOS> <PAD> <PAD> ..."の三連に変換する
|
||
for i in range(1, self.tokenizer_max_length - self.tokenizer.model_max_length + 2, self.tokenizer.model_max_length - 2):
|
||
ids_chunk = (input_ids[0].unsqueeze(0), # BOS
|
||
input_ids[i:i + self.tokenizer.model_max_length - 2],
|
||
input_ids[-1].unsqueeze(0)) # PAD or EOS
|
||
ids_chunk = torch.cat(ids_chunk)
|
||
|
||
# 末尾が <EOS> <PAD> または <PAD> <PAD> の場合は、何もしなくてよい
|
||
# 末尾が x <PAD/EOS> の場合は末尾を <EOS> に変える(x <EOS> なら結果的に変化なし)
|
||
if ids_chunk[-2] != self.tokenizer.eos_token_id and ids_chunk[-2] != self.tokenizer.pad_token_id:
|
||
ids_chunk[-1] = self.tokenizer.eos_token_id
|
||
# 先頭が <BOS> <PAD> ... の場合は <BOS> <EOS> <PAD> ... に変える
|
||
if ids_chunk[1] == self.tokenizer.pad_token_id:
|
||
ids_chunk[1] = self.tokenizer.eos_token_id
|
||
|
||
iids_list.append(ids_chunk)
|
||
|
||
input_ids = torch.stack(iids_list) # 3,77
|
||
return input_ids
|
||
|
||
def register_image(self, info: ImageInfo):
|
||
self.image_data[info.image_key] = info
|
||
|
||
def make_buckets(self):
|
||
'''
|
||
bucketingを行わない場合も呼び出し必須(ひとつだけbucketを作る)
|
||
min_size and max_size are ignored when enable_bucket is False
|
||
'''
|
||
print("loading image sizes.")
|
||
for info in tqdm(self.image_data.values()):
|
||
if info.image_size is None:
|
||
info.image_size = self.get_image_size(info.absolute_path)
|
||
|
||
if self.enable_bucket:
|
||
print("make buckets")
|
||
else:
|
||
print("prepare dataset")
|
||
|
||
# bucketを作成し、画像をbucketに振り分ける
|
||
if self.enable_bucket:
|
||
if self.bucket_manager is None: # fine tuningの場合でmetadataに定義がある場合は、すでに初期化済み
|
||
self.bucket_manager = BucketManager(self.bucket_no_upscale, (self.width, self.height),
|
||
self.min_bucket_reso, self.max_bucket_reso, self.bucket_reso_steps)
|
||
if not self.bucket_no_upscale:
|
||
self.bucket_manager.make_buckets()
|
||
else:
|
||
print("min_bucket_reso and max_bucket_reso are ignored if bucket_no_upscale is set, because bucket reso is defined by image size automatically / bucket_no_upscaleが指定された場合は、bucketの解像度は画像サイズから自動計算されるため、min_bucket_resoとmax_bucket_resoは無視されます")
|
||
|
||
img_ar_errors = []
|
||
for image_info in self.image_data.values():
|
||
image_width, image_height = image_info.image_size
|
||
image_info.bucket_reso, image_info.resized_size, ar_error = self.bucket_manager.select_bucket(image_width, image_height)
|
||
|
||
# print(image_info.image_key, image_info.bucket_reso)
|
||
img_ar_errors.append(abs(ar_error))
|
||
|
||
self.bucket_manager.sort()
|
||
else:
|
||
self.bucket_manager = BucketManager(False, (self.width, self.height), None, None, None)
|
||
self.bucket_manager.set_predefined_resos([(self.width, self.height)]) # ひとつの固定サイズbucketのみ
|
||
for image_info in self.image_data.values():
|
||
image_width, image_height = image_info.image_size
|
||
image_info.bucket_reso, image_info.resized_size, _ = self.bucket_manager.select_bucket(image_width, image_height)
|
||
|
||
for image_info in self.image_data.values():
|
||
for _ in range(image_info.num_repeats):
|
||
self.bucket_manager.add_image(image_info.bucket_reso, image_info.image_key)
|
||
|
||
# bucket情報を表示、格納する
|
||
if self.enable_bucket:
|
||
self.bucket_info = {"buckets": {}}
|
||
print("number of images (including repeats) / 各bucketの画像枚数(繰り返し回数を含む)")
|
||
for i, (reso, bucket) in enumerate(zip(self.bucket_manager.resos, self.bucket_manager.buckets)):
|
||
count = len(bucket)
|
||
if count > 0:
|
||
self.bucket_info["buckets"][i] = {"resolution": reso, "count": len(bucket)}
|
||
print(f"bucket {i}: resolution {reso}, count: {len(bucket)}")
|
||
|
||
img_ar_errors = np.array(img_ar_errors)
|
||
mean_img_ar_error = np.mean(np.abs(img_ar_errors))
|
||
self.bucket_info["mean_img_ar_error"] = mean_img_ar_error
|
||
print(f"mean ar error (without repeats): {mean_img_ar_error}")
|
||
|
||
# データ参照用indexを作る。このindexはdatasetのshuffleに用いられる
|
||
self.buckets_indices: List(BucketBatchIndex) = []
|
||
for bucket_index, bucket in enumerate(self.bucket_manager.buckets):
|
||
# bucketが細分化されることにより、ひとつのbucketに一種類の画像のみというケースが増え、つまりそれは
|
||
# ひとつのbatchが同じ画像で占められることになるので、さすがに良くないであろう
|
||
# そのためバッチサイズを画像種類までに制限する
|
||
# ただそれでも同一画像が同一バッチに含まれる可能性はあるので、繰り返し回数が少ないほうがshuffleの品質は良くなることは間違いない?
|
||
# TODO 正則化画像をepochまたがりで利用する仕組み
|
||
num_of_image_types = len(set(bucket))
|
||
bucket_batch_size = min(self.batch_size, num_of_image_types)
|
||
batch_count = int(math.ceil(len(bucket) / bucket_batch_size))
|
||
# print(bucket_index, num_of_image_types, bucket_batch_size, batch_count)
|
||
for batch_index in range(batch_count):
|
||
self.buckets_indices.append(BucketBatchIndex(bucket_index, bucket_batch_size, batch_index))
|
||
|
||
self.shuffle_buckets()
|
||
self._length = len(self.buckets_indices)
|
||
|
||
def shuffle_buckets(self):
|
||
random.shuffle(self.buckets_indices)
|
||
self.bucket_manager.shuffle()
|
||
|
||
def load_image(self, image_path):
|
||
image = Image.open(image_path)
|
||
if not image.mode == "RGB":
|
||
image = image.convert("RGB")
|
||
img = np.array(image, np.uint8)
|
||
return img
|
||
|
||
def trim_and_resize_if_required(self, image, reso, resized_size):
|
||
image_height, image_width = image.shape[0:2]
|
||
|
||
if image_width != resized_size[0] or image_height != resized_size[1]:
|
||
# リサイズする
|
||
image = cv2.resize(image, resized_size, interpolation=cv2.INTER_AREA) # INTER_AREAでやりたいのでcv2でリサイズ
|
||
|
||
image_height, image_width = image.shape[0:2]
|
||
if image_width > reso[0]:
|
||
trim_size = image_width - reso[0]
|
||
p = trim_size // 2 if not self.random_crop else random.randint(0, trim_size)
|
||
# print("w", trim_size, p)
|
||
image = image[:, p:p + reso[0]]
|
||
if image_height > reso[1]:
|
||
trim_size = image_height - reso[1]
|
||
p = trim_size // 2 if not self.random_crop else random.randint(0, trim_size)
|
||
# print("h", trim_size, p)
|
||
image = image[p:p + reso[1]]
|
||
|
||
assert image.shape[0] == reso[1] and image.shape[1] == reso[0], f"internal error, illegal trimmed size: {image.shape}, {reso}"
|
||
return image
|
||
|
||
def cache_latents(self, vae):
|
||
# TODO ここを高速化したい
|
||
print("caching latents.")
|
||
for info in tqdm(self.image_data.values()):
|
||
if info.latents_npz is not None:
|
||
info.latents = self.load_latents_from_npz(info, False)
|
||
info.latents = torch.FloatTensor(info.latents)
|
||
info.latents_flipped = self.load_latents_from_npz(info, True) # might be None
|
||
if info.latents_flipped is not None:
|
||
info.latents_flipped = torch.FloatTensor(info.latents_flipped)
|
||
continue
|
||
|
||
image = self.load_image(info.absolute_path)
|
||
image = self.trim_and_resize_if_required(image, info.bucket_reso, info.resized_size)
|
||
|
||
img_tensor = self.image_transforms(image)
|
||
img_tensor = img_tensor.unsqueeze(0).to(device=vae.device, dtype=vae.dtype)
|
||
info.latents = vae.encode(img_tensor).latent_dist.sample().squeeze(0).to("cpu")
|
||
|
||
if self.flip_aug:
|
||
image = image[:, ::-1].copy() # cannot convert to Tensor without copy
|
||
img_tensor = self.image_transforms(image)
|
||
img_tensor = img_tensor.unsqueeze(0).to(device=vae.device, dtype=vae.dtype)
|
||
info.latents_flipped = vae.encode(img_tensor).latent_dist.sample().squeeze(0).to("cpu")
|
||
|
||
def get_image_size(self, image_path):
|
||
image = Image.open(image_path)
|
||
return image.size
|
||
|
||
def load_image_with_face_info(self, image_path: str):
|
||
img = self.load_image(image_path)
|
||
|
||
face_cx = face_cy = face_w = face_h = 0
|
||
if self.face_crop_aug_range is not None:
|
||
tokens = os.path.splitext(os.path.basename(image_path))[0].split('_')
|
||
if len(tokens) >= 5:
|
||
face_cx = int(tokens[-4])
|
||
face_cy = int(tokens[-3])
|
||
face_w = int(tokens[-2])
|
||
face_h = int(tokens[-1])
|
||
|
||
return img, face_cx, face_cy, face_w, face_h
|
||
|
||
# いい感じに切り出す
|
||
def crop_target(self, image, face_cx, face_cy, face_w, face_h):
|
||
height, width = image.shape[0:2]
|
||
if height == self.height and width == self.width:
|
||
return image
|
||
|
||
# 画像サイズはsizeより大きいのでリサイズする
|
||
face_size = max(face_w, face_h)
|
||
min_scale = max(self.height / height, self.width / width) # 画像がモデル入力サイズぴったりになる倍率(最小の倍率)
|
||
min_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[1]))) # 指定した顔最小サイズ
|
||
max_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[0]))) # 指定した顔最大サイズ
|
||
if min_scale >= max_scale: # range指定がmin==max
|
||
scale = min_scale
|
||
else:
|
||
scale = random.uniform(min_scale, max_scale)
|
||
|
||
nh = int(height * scale + .5)
|
||
nw = int(width * scale + .5)
|
||
assert nh >= self.height and nw >= self.width, f"internal error. small scale {scale}, {width}*{height}"
|
||
image = cv2.resize(image, (nw, nh), interpolation=cv2.INTER_AREA)
|
||
face_cx = int(face_cx * scale + .5)
|
||
face_cy = int(face_cy * scale + .5)
|
||
height, width = nh, nw
|
||
|
||
# 顔を中心として448*640とかへ切り出す
|
||
for axis, (target_size, length, face_p) in enumerate(zip((self.height, self.width), (height, width), (face_cy, face_cx))):
|
||
p1 = face_p - target_size // 2 # 顔を中心に持ってくるための切り出し位置
|
||
|
||
if self.random_crop:
|
||
# 背景も含めるために顔を中心に置く確率を高めつつずらす
|
||
range = max(length - face_p, face_p) # 画像の端から顔中心までの距離の長いほう
|
||
p1 = p1 + (random.randint(0, range) + random.randint(0, range)) - range # -range ~ +range までのいい感じの乱数
|
||
else:
|
||
# range指定があるときのみ、すこしだけランダムに(わりと適当)
|
||
if self.face_crop_aug_range[0] != self.face_crop_aug_range[1]:
|
||
if face_size > self.size // 10 and face_size >= 40:
|
||
p1 = p1 + random.randint(-face_size // 20, +face_size // 20)
|
||
|
||
p1 = max(0, min(p1, length - target_size))
|
||
|
||
if axis == 0:
|
||
image = image[p1:p1 + target_size, :]
|
||
else:
|
||
image = image[:, p1:p1 + target_size]
|
||
|
||
return image
|
||
|
||
def load_latents_from_npz(self, image_info: ImageInfo, flipped):
|
||
npz_file = image_info.latents_npz_flipped if flipped else image_info.latents_npz
|
||
if npz_file is None:
|
||
return None
|
||
return np.load(npz_file)['arr_0']
|
||
|
||
def __len__(self):
|
||
return self._length
|
||
|
||
def __getitem__(self, index):
|
||
if index == 0:
|
||
self.shuffle_buckets()
|
||
|
||
bucket = self.bucket_manager.buckets[self.buckets_indices[index].bucket_index]
|
||
bucket_batch_size = self.buckets_indices[index].bucket_batch_size
|
||
image_index = self.buckets_indices[index].batch_index * bucket_batch_size
|
||
|
||
loss_weights = []
|
||
captions = []
|
||
input_ids_list = []
|
||
latents_list = []
|
||
images = []
|
||
|
||
for image_key in bucket[image_index:image_index + bucket_batch_size]:
|
||
image_info = self.image_data[image_key]
|
||
loss_weights.append(self.prior_loss_weight if image_info.is_reg else 1.0)
|
||
|
||
# image/latentsを処理する
|
||
if image_info.latents is not None:
|
||
latents = image_info.latents if not self.flip_aug or random.random() < .5 else image_info.latents_flipped
|
||
image = None
|
||
elif image_info.latents_npz is not None:
|
||
latents = self.load_latents_from_npz(image_info, self.flip_aug and random.random() >= .5)
|
||
latents = torch.FloatTensor(latents)
|
||
image = None
|
||
else:
|
||
# 画像を読み込み、必要ならcropする
|
||
img, face_cx, face_cy, face_w, face_h = self.load_image_with_face_info(image_info.absolute_path)
|
||
im_h, im_w = img.shape[0:2]
|
||
|
||
if self.enable_bucket:
|
||
img = self.trim_and_resize_if_required(img, image_info.bucket_reso, image_info.resized_size)
|
||
else:
|
||
if face_cx > 0: # 顔位置情報あり
|
||
img = self.crop_target(img, face_cx, face_cy, face_w, face_h)
|
||
elif im_h > self.height or im_w > self.width:
|
||
assert self.random_crop, f"image too large, but cropping and bucketing are disabled / 画像サイズが大きいのでface_crop_aug_rangeかrandom_crop、またはbucketを有効にしてください: {image_info.absolute_path}"
|
||
if im_h > self.height:
|
||
p = random.randint(0, im_h - self.height)
|
||
img = img[p:p + self.height]
|
||
if im_w > self.width:
|
||
p = random.randint(0, im_w - self.width)
|
||
img = img[:, p:p + self.width]
|
||
|
||
im_h, im_w = img.shape[0:2]
|
||
assert im_h == self.height and im_w == self.width, f"image size is small / 画像サイズが小さいようです: {image_info.absolute_path}"
|
||
|
||
# augmentation
|
||
if self.aug is not None:
|
||
img = self.aug(image=img)['image']
|
||
|
||
latents = None
|
||
image = self.image_transforms(img) # -1.0~1.0のtorch.Tensorになる
|
||
|
||
images.append(image)
|
||
latents_list.append(latents)
|
||
|
||
caption = self.process_caption(image_info.caption)
|
||
captions.append(caption)
|
||
if not self.token_padding_disabled: # this option might be omitted in future
|
||
input_ids_list.append(self.get_input_ids(caption))
|
||
|
||
example = {}
|
||
example['loss_weights'] = torch.FloatTensor(loss_weights)
|
||
|
||
if self.token_padding_disabled:
|
||
# padding=True means pad in the batch
|
||
example['input_ids'] = self.tokenizer(captions, padding=True, truncation=True, return_tensors="pt").input_ids
|
||
else:
|
||
# batch processing seems to be good
|
||
example['input_ids'] = torch.stack(input_ids_list)
|
||
|
||
if images[0] is not None:
|
||
images = torch.stack(images)
|
||
images = images.to(memory_format=torch.contiguous_format).float()
|
||
else:
|
||
images = None
|
||
example['images'] = images
|
||
|
||
example['latents'] = torch.stack(latents_list) if latents_list[0] is not None else None
|
||
|
||
if self.debug_dataset:
|
||
example['image_keys'] = bucket[image_index:image_index + self.batch_size]
|
||
example['captions'] = captions
|
||
return example
|
||
|
||
|
||
class DreamBoothDataset(BaseDataset):
|
||
def __init__(self, batch_size, train_data_dir, reg_data_dir, tokenizer, max_token_length, caption_extension, shuffle_caption, shuffle_keep_tokens, resolution, enable_bucket, min_bucket_reso, max_bucket_reso, bucket_reso_steps, bucket_no_upscale, prior_loss_weight, flip_aug, color_aug, face_crop_aug_range, random_crop, debug_dataset) -> None:
|
||
super().__init__(tokenizer, max_token_length, shuffle_caption, shuffle_keep_tokens,
|
||
resolution, flip_aug, color_aug, face_crop_aug_range, random_crop, debug_dataset)
|
||
|
||
assert resolution is not None, f"resolution is required / resolution(解像度)指定は必須です"
|
||
|
||
self.batch_size = batch_size
|
||
self.size = min(self.width, self.height) # 短いほう
|
||
self.prior_loss_weight = prior_loss_weight
|
||
self.latents_cache = None
|
||
|
||
self.enable_bucket = enable_bucket
|
||
if self.enable_bucket:
|
||
assert min(resolution) >= min_bucket_reso, f"min_bucket_reso must be equal or less than resolution / min_bucket_resoは最小解像度より大きくできません。解像度を大きくするかmin_bucket_resoを小さくしてください"
|
||
assert max(resolution) <= max_bucket_reso, f"max_bucket_reso must be equal or greater than resolution / max_bucket_resoは最大解像度より小さくできません。解像度を小さくするかmin_bucket_resoを大きくしてください"
|
||
self.min_bucket_reso = min_bucket_reso
|
||
self.max_bucket_reso = max_bucket_reso
|
||
self.bucket_reso_steps = bucket_reso_steps
|
||
self.bucket_no_upscale = bucket_no_upscale
|
||
else:
|
||
self.min_bucket_reso = None
|
||
self.max_bucket_reso = None
|
||
self.bucket_reso_steps = None # この情報は使われない
|
||
self.bucket_no_upscale = False
|
||
|
||
def read_caption(img_path):
|
||
# captionの候補ファイル名を作る
|
||
base_name = os.path.splitext(img_path)[0]
|
||
base_name_face_det = base_name
|
||
tokens = base_name.split("_")
|
||
if len(tokens) >= 5:
|
||
base_name_face_det = "_".join(tokens[:-4])
|
||
cap_paths = [base_name + caption_extension, base_name_face_det + caption_extension]
|
||
|
||
caption = None
|
||
for cap_path in cap_paths:
|
||
if os.path.isfile(cap_path):
|
||
with open(cap_path, "rt", encoding='utf-8') as f:
|
||
try:
|
||
lines = f.readlines()
|
||
except UnicodeDecodeError as e:
|
||
print(f"illegal char in file (not UTF-8) / ファイルにUTF-8以外の文字があります: {cap_path}")
|
||
raise e
|
||
assert len(lines) > 0, f"caption file is empty / キャプションファイルが空です: {cap_path}"
|
||
caption = lines[0].strip()
|
||
break
|
||
return caption
|
||
|
||
def load_dreambooth_dir(dir):
|
||
if not os.path.isdir(dir):
|
||
# print(f"ignore file: {dir}")
|
||
return 0, [], []
|
||
|
||
tokens = os.path.basename(dir).split('_')
|
||
try:
|
||
n_repeats = int(tokens[0])
|
||
except ValueError as e:
|
||
print(f"ignore directory without repeats / 繰り返し回数のないディレクトリを無視します: {dir}")
|
||
return 0, [], []
|
||
|
||
caption_by_folder = '_'.join(tokens[1:])
|
||
img_paths = glob_images(dir, "*")
|
||
print(f"found directory {n_repeats}_{caption_by_folder} contains {len(img_paths)} image files")
|
||
|
||
# 画像ファイルごとにプロンプトを読み込み、もしあればそちらを使う
|
||
captions = []
|
||
for img_path in img_paths:
|
||
cap_for_img = read_caption(img_path)
|
||
captions.append(caption_by_folder if cap_for_img is None else cap_for_img)
|
||
|
||
self.set_tag_frequency(os.path.basename(dir), captions) # タグ頻度を記録
|
||
|
||
return n_repeats, img_paths, captions
|
||
|
||
print("prepare train images.")
|
||
train_dirs = os.listdir(train_data_dir)
|
||
num_train_images = 0
|
||
for dir in train_dirs:
|
||
n_repeats, img_paths, captions = load_dreambooth_dir(os.path.join(train_data_dir, dir))
|
||
num_train_images += n_repeats * len(img_paths)
|
||
|
||
for img_path, caption in zip(img_paths, captions):
|
||
info = ImageInfo(img_path, n_repeats, caption, False, img_path)
|
||
self.register_image(info)
|
||
|
||
self.dataset_dirs_info[os.path.basename(dir)] = {"n_repeats": n_repeats, "img_count": len(img_paths)}
|
||
|
||
print(f"{num_train_images} train images with repeating.")
|
||
self.num_train_images = num_train_images
|
||
|
||
# reg imageは数を数えて学習画像と同じ枚数にする
|
||
num_reg_images = 0
|
||
if reg_data_dir:
|
||
print("prepare reg images.")
|
||
reg_infos: List[ImageInfo] = []
|
||
|
||
reg_dirs = os.listdir(reg_data_dir)
|
||
for dir in reg_dirs:
|
||
n_repeats, img_paths, captions = load_dreambooth_dir(os.path.join(reg_data_dir, dir))
|
||
num_reg_images += n_repeats * len(img_paths)
|
||
|
||
for img_path, caption in zip(img_paths, captions):
|
||
info = ImageInfo(img_path, n_repeats, caption, True, img_path)
|
||
reg_infos.append(info)
|
||
|
||
self.reg_dataset_dirs_info[os.path.basename(dir)] = {"n_repeats": n_repeats, "img_count": len(img_paths)}
|
||
|
||
print(f"{num_reg_images} reg images.")
|
||
if num_train_images < num_reg_images:
|
||
print("some of reg images are not used / 正則化画像の数が多いので、一部使用されない正則化画像があります")
|
||
|
||
if num_reg_images == 0:
|
||
print("no regularization images / 正則化画像が見つかりませんでした")
|
||
else:
|
||
# num_repeatsを計算する:どうせ大した数ではないのでループで処理する
|
||
n = 0
|
||
first_loop = True
|
||
while n < num_train_images:
|
||
for info in reg_infos:
|
||
if first_loop:
|
||
self.register_image(info)
|
||
n += info.num_repeats
|
||
else:
|
||
info.num_repeats += 1
|
||
n += 1
|
||
if n >= num_train_images:
|
||
break
|
||
first_loop = False
|
||
|
||
self.num_reg_images = num_reg_images
|
||
|
||
|
||
class FineTuningDataset(BaseDataset):
|
||
def __init__(self, json_file_name, batch_size, train_data_dir, tokenizer, max_token_length, shuffle_caption, shuffle_keep_tokens, resolution, enable_bucket, min_bucket_reso, max_bucket_reso, bucket_reso_steps, bucket_no_upscale, flip_aug, color_aug, face_crop_aug_range, random_crop, dataset_repeats, debug_dataset) -> None:
|
||
super().__init__(tokenizer, max_token_length, shuffle_caption, shuffle_keep_tokens,
|
||
resolution, flip_aug, color_aug, face_crop_aug_range, random_crop, debug_dataset)
|
||
|
||
# メタデータを読み込む
|
||
if os.path.exists(json_file_name):
|
||
print(f"loading existing metadata: {json_file_name}")
|
||
with open(json_file_name, "rt", encoding='utf-8') as f:
|
||
metadata = json.load(f)
|
||
else:
|
||
raise ValueError(f"no metadata / メタデータファイルがありません: {json_file_name}")
|
||
|
||
self.metadata = metadata
|
||
self.train_data_dir = train_data_dir
|
||
self.batch_size = batch_size
|
||
|
||
tags_list = []
|
||
for image_key, img_md in metadata.items():
|
||
# path情報を作る
|
||
if os.path.exists(image_key):
|
||
abs_path = image_key
|
||
else:
|
||
# わりといい加減だがいい方法が思いつかん
|
||
abs_path = glob_images(train_data_dir, image_key)
|
||
assert len(abs_path) >= 1, f"no image / 画像がありません: {image_key}"
|
||
abs_path = abs_path[0]
|
||
|
||
caption = img_md.get('caption')
|
||
tags = img_md.get('tags')
|
||
if caption is None:
|
||
caption = tags
|
||
elif tags is not None and len(tags) > 0:
|
||
caption = caption + ', ' + tags
|
||
tags_list.append(tags)
|
||
assert caption is not None and len(caption) > 0, f"caption or tag is required / キャプションまたはタグは必須です:{abs_path}"
|
||
|
||
image_info = ImageInfo(image_key, dataset_repeats, caption, False, abs_path)
|
||
image_info.image_size = img_md.get('train_resolution')
|
||
|
||
if not self.color_aug and not self.random_crop:
|
||
# if npz exists, use them
|
||
image_info.latents_npz, image_info.latents_npz_flipped = self.image_key_to_npz_file(image_key)
|
||
|
||
self.register_image(image_info)
|
||
self.num_train_images = len(metadata) * dataset_repeats
|
||
self.num_reg_images = 0
|
||
|
||
self.set_tag_frequency(os.path.basename(json_file_name), tags_list)
|
||
self.dataset_dirs_info[os.path.basename(json_file_name)] = {"n_repeats": dataset_repeats, "img_count": len(metadata)}
|
||
|
||
# check existence of all npz files
|
||
use_npz_latents = not (self.color_aug or self.random_crop)
|
||
if use_npz_latents:
|
||
npz_any = False
|
||
npz_all = True
|
||
for image_info in self.image_data.values():
|
||
has_npz = image_info.latents_npz is not None
|
||
npz_any = npz_any or has_npz
|
||
|
||
if self.flip_aug:
|
||
has_npz = has_npz and image_info.latents_npz_flipped is not None
|
||
npz_all = npz_all and has_npz
|
||
|
||
if npz_any and not npz_all:
|
||
break
|
||
|
||
if not npz_any:
|
||
use_npz_latents = False
|
||
print(f"npz file does not exist. ignore npz files / npzファイルが見つからないためnpzファイルを無視します")
|
||
elif not npz_all:
|
||
use_npz_latents = False
|
||
print(f"some of npz file does not exist. ignore npz files / いくつかのnpzファイルが見つからないためnpzファイルを無視します")
|
||
if self.flip_aug:
|
||
print("maybe no flipped files / 反転されたnpzファイルがないのかもしれません")
|
||
# else:
|
||
# print("npz files are not used with color_aug and/or random_crop / color_augまたはrandom_cropが指定されているためnpzファイルは使用されません")
|
||
|
||
# check min/max bucket size
|
||
sizes = set()
|
||
resos = set()
|
||
for image_info in self.image_data.values():
|
||
if image_info.image_size is None:
|
||
sizes = None # not calculated
|
||
break
|
||
sizes.add(image_info.image_size[0])
|
||
sizes.add(image_info.image_size[1])
|
||
resos.add(tuple(image_info.image_size))
|
||
|
||
if sizes is None:
|
||
if use_npz_latents:
|
||
use_npz_latents = False
|
||
print(f"npz files exist, but no bucket info in metadata. ignore npz files / メタデータにbucket情報がないためnpzファイルを無視します")
|
||
|
||
assert resolution is not None, "if metadata doesn't have bucket info, resolution is required / メタデータにbucket情報がない場合はresolutionを指定してください"
|
||
|
||
self.enable_bucket = enable_bucket
|
||
if self.enable_bucket:
|
||
self.min_bucket_reso = min_bucket_reso
|
||
self.max_bucket_reso = max_bucket_reso
|
||
self.bucket_reso_steps = bucket_reso_steps
|
||
self.bucket_no_upscale = bucket_no_upscale
|
||
else:
|
||
if not enable_bucket:
|
||
print("metadata has bucket info, enable bucketing / メタデータにbucket情報があるためbucketを有効にします")
|
||
print("using bucket info in metadata / メタデータ内のbucket情報を使います")
|
||
self.enable_bucket = True
|
||
|
||
assert not bucket_no_upscale, "if metadata has bucket info, bucket reso is precalculated, so bucket_no_upscale cannot be used / メタデータ内にbucket情報がある場合はbucketの解像度は計算済みのため、bucket_no_upscaleは使えません"
|
||
|
||
# bucket情報を初期化しておく、make_bucketsで再作成しない
|
||
self.bucket_manager = BucketManager(False, None, None, None, None)
|
||
self.bucket_manager.set_predefined_resos(resos)
|
||
|
||
# npz情報をきれいにしておく
|
||
if not use_npz_latents:
|
||
for image_info in self.image_data.values():
|
||
image_info.latents_npz = image_info.latents_npz_flipped = None
|
||
|
||
def image_key_to_npz_file(self, image_key):
|
||
base_name = os.path.splitext(image_key)[0]
|
||
npz_file_norm = base_name + '.npz'
|
||
|
||
if os.path.exists(npz_file_norm):
|
||
# image_key is full path
|
||
npz_file_flip = base_name + '_flip.npz'
|
||
if not os.path.exists(npz_file_flip):
|
||
npz_file_flip = None
|
||
return npz_file_norm, npz_file_flip
|
||
|
||
# image_key is relative path
|
||
npz_file_norm = os.path.join(self.train_data_dir, image_key + '.npz')
|
||
npz_file_flip = os.path.join(self.train_data_dir, image_key + '_flip.npz')
|
||
|
||
if not os.path.exists(npz_file_norm):
|
||
npz_file_norm = None
|
||
npz_file_flip = None
|
||
elif not os.path.exists(npz_file_flip):
|
||
npz_file_flip = None
|
||
|
||
return npz_file_norm, npz_file_flip
|
||
|
||
|
||
def debug_dataset(train_dataset, show_input_ids=False):
|
||
print(f"Total dataset length (steps) / データセットの長さ(ステップ数): {len(train_dataset)}")
|
||
print("Escape for exit. / Escキーで中断、終了します")
|
||
k = 0
|
||
for i, example in enumerate(train_dataset):
|
||
if example['latents'] is not None:
|
||
print(f"sample has latents from npz file: {example['latents'].size()}")
|
||
for j, (ik, cap, lw, iid) in enumerate(zip(example['image_keys'], example['captions'], example['loss_weights'], example['input_ids'])):
|
||
print(f'{ik}, size: {train_dataset.image_data[ik].image_size}, loss weight: {lw}, caption: "{cap}"')
|
||
if show_input_ids:
|
||
print(f"input ids: {iid}")
|
||
if example['images'] is not None:
|
||
im = example['images'][j]
|
||
print(f"image size: {im.size()}")
|
||
im = ((im.numpy() + 1.0) * 127.5).astype(np.uint8)
|
||
im = np.transpose(im, (1, 2, 0)) # c,H,W -> H,W,c
|
||
im = im[:, :, ::-1] # RGB -> BGR (OpenCV)
|
||
if os.name == 'nt': # only windows
|
||
cv2.imshow("img", im)
|
||
k = cv2.waitKey()
|
||
cv2.destroyAllWindows()
|
||
if k == 27:
|
||
break
|
||
if k == 27 or (example['images'] is None and i >= 8):
|
||
break
|
||
|
||
|
||
def glob_images(directory, base="*"):
|
||
img_paths = []
|
||
for ext in IMAGE_EXTENSIONS:
|
||
if base == '*':
|
||
img_paths.extend(glob.glob(os.path.join(glob.escape(directory), base + ext)))
|
||
else:
|
||
img_paths.extend(glob.glob(glob.escape(os.path.join(directory, base + ext))))
|
||
# img_paths = list(set(img_paths)) # 重複を排除
|
||
# img_paths.sort()
|
||
return img_paths
|
||
|
||
|
||
def glob_images_pathlib(dir_path, recursive):
|
||
image_paths = []
|
||
if recursive:
|
||
for ext in IMAGE_EXTENSIONS:
|
||
image_paths += list(dir_path.rglob('*' + ext))
|
||
else:
|
||
for ext in IMAGE_EXTENSIONS:
|
||
image_paths += list(dir_path.glob('*' + ext))
|
||
# image_paths = list(set(image_paths)) # 重複を排除
|
||
# image_paths.sort()
|
||
return image_paths
|
||
|
||
# endregion
|
||
|
||
|
||
# region モジュール入れ替え部
|
||
"""
|
||
高速化のためのモジュール入れ替え
|
||
"""
|
||
|
||
# FlashAttentionを使うCrossAttention
|
||
# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py
|
||
# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE
|
||
|
||
# constants
|
||
|
||
EPSILON = 1e-6
|
||
|
||
# helper functions
|
||
|
||
|
||
def exists(val):
|
||
return val is not None
|
||
|
||
|
||
def default(val, d):
|
||
return val if exists(val) else d
|
||
|
||
|
||
def model_hash(filename):
|
||
"""Old model hash used by stable-diffusion-webui"""
|
||
try:
|
||
with open(filename, "rb") as file:
|
||
m = hashlib.sha256()
|
||
|
||
file.seek(0x100000)
|
||
m.update(file.read(0x10000))
|
||
return m.hexdigest()[0:8]
|
||
except FileNotFoundError:
|
||
return 'NOFILE'
|
||
|
||
|
||
def calculate_sha256(filename):
|
||
"""New model hash used by stable-diffusion-webui"""
|
||
hash_sha256 = hashlib.sha256()
|
||
blksize = 1024 * 1024
|
||
|
||
with open(filename, "rb") as f:
|
||
for chunk in iter(lambda: f.read(blksize), b""):
|
||
hash_sha256.update(chunk)
|
||
|
||
return hash_sha256.hexdigest()
|
||
|
||
|
||
def precalculate_safetensors_hashes(tensors, metadata):
|
||
"""Precalculate the model hashes needed by sd-webui-additional-networks to
|
||
save time on indexing the model later."""
|
||
|
||
# Because writing user metadata to the file can change the result of
|
||
# sd_models.model_hash(), only retain the training metadata for purposes of
|
||
# calculating the hash, as they are meant to be immutable
|
||
metadata = {k: v for k, v in metadata.items() if k.startswith("ss_")}
|
||
|
||
bytes = safetensors.torch.save(tensors, metadata)
|
||
b = BytesIO(bytes)
|
||
|
||
model_hash = addnet_hash_safetensors(b)
|
||
legacy_hash = addnet_hash_legacy(b)
|
||
return model_hash, legacy_hash
|
||
|
||
|
||
def addnet_hash_legacy(b):
|
||
"""Old model hash used by sd-webui-additional-networks for .safetensors format files"""
|
||
m = hashlib.sha256()
|
||
|
||
b.seek(0x100000)
|
||
m.update(b.read(0x10000))
|
||
return m.hexdigest()[0:8]
|
||
|
||
|
||
def addnet_hash_safetensors(b):
|
||
"""New model hash used by sd-webui-additional-networks for .safetensors format files"""
|
||
hash_sha256 = hashlib.sha256()
|
||
blksize = 1024 * 1024
|
||
|
||
b.seek(0)
|
||
header = b.read(8)
|
||
n = int.from_bytes(header, "little")
|
||
|
||
offset = n + 8
|
||
b.seek(offset)
|
||
for chunk in iter(lambda: b.read(blksize), b""):
|
||
hash_sha256.update(chunk)
|
||
|
||
return hash_sha256.hexdigest()
|
||
|
||
|
||
# flash attention forwards and backwards
|
||
|
||
# https://arxiv.org/abs/2205.14135
|
||
|
||
|
||
class FlashAttentionFunction(torch.autograd.function.Function):
|
||
@ staticmethod
|
||
@ torch.no_grad()
|
||
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
|
||
""" Algorithm 2 in the paper """
|
||
|
||
device = q.device
|
||
dtype = q.dtype
|
||
max_neg_value = -torch.finfo(q.dtype).max
|
||
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
||
|
||
o = torch.zeros_like(q)
|
||
all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device)
|
||
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device)
|
||
|
||
scale = (q.shape[-1] ** -0.5)
|
||
|
||
if not exists(mask):
|
||
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
|
||
else:
|
||
mask = rearrange(mask, 'b n -> b 1 1 n')
|
||
mask = mask.split(q_bucket_size, dim=-1)
|
||
|
||
row_splits = zip(
|
||
q.split(q_bucket_size, dim=-2),
|
||
o.split(q_bucket_size, dim=-2),
|
||
mask,
|
||
all_row_sums.split(q_bucket_size, dim=-2),
|
||
all_row_maxes.split(q_bucket_size, dim=-2),
|
||
)
|
||
|
||
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
|
||
q_start_index = ind * q_bucket_size - qk_len_diff
|
||
|
||
col_splits = zip(
|
||
k.split(k_bucket_size, dim=-2),
|
||
v.split(k_bucket_size, dim=-2),
|
||
)
|
||
|
||
for k_ind, (kc, vc) in enumerate(col_splits):
|
||
k_start_index = k_ind * k_bucket_size
|
||
|
||
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
|
||
|
||
if exists(row_mask):
|
||
attn_weights.masked_fill_(~row_mask, max_neg_value)
|
||
|
||
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
||
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
|
||
device=device).triu(q_start_index - k_start_index + 1)
|
||
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
||
|
||
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
|
||
attn_weights -= block_row_maxes
|
||
exp_weights = torch.exp(attn_weights)
|
||
|
||
if exists(row_mask):
|
||
exp_weights.masked_fill_(~row_mask, 0.)
|
||
|
||
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON)
|
||
|
||
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
|
||
|
||
exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc)
|
||
|
||
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
|
||
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
|
||
|
||
new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums
|
||
|
||
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values)
|
||
|
||
row_maxes.copy_(new_row_maxes)
|
||
row_sums.copy_(new_row_sums)
|
||
|
||
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
|
||
ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)
|
||
|
||
return o
|
||
|
||
@ staticmethod
|
||
@ torch.no_grad()
|
||
def backward(ctx, do):
|
||
""" Algorithm 4 in the paper """
|
||
|
||
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
|
||
q, k, v, o, l, m = ctx.saved_tensors
|
||
|
||
device = q.device
|
||
|
||
max_neg_value = -torch.finfo(q.dtype).max
|
||
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
||
|
||
dq = torch.zeros_like(q)
|
||
dk = torch.zeros_like(k)
|
||
dv = torch.zeros_like(v)
|
||
|
||
row_splits = zip(
|
||
q.split(q_bucket_size, dim=-2),
|
||
o.split(q_bucket_size, dim=-2),
|
||
do.split(q_bucket_size, dim=-2),
|
||
mask,
|
||
l.split(q_bucket_size, dim=-2),
|
||
m.split(q_bucket_size, dim=-2),
|
||
dq.split(q_bucket_size, dim=-2)
|
||
)
|
||
|
||
for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
|
||
q_start_index = ind * q_bucket_size - qk_len_diff
|
||
|
||
col_splits = zip(
|
||
k.split(k_bucket_size, dim=-2),
|
||
v.split(k_bucket_size, dim=-2),
|
||
dk.split(k_bucket_size, dim=-2),
|
||
dv.split(k_bucket_size, dim=-2),
|
||
)
|
||
|
||
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
|
||
k_start_index = k_ind * k_bucket_size
|
||
|
||
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
|
||
|
||
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
||
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
|
||
device=device).triu(q_start_index - k_start_index + 1)
|
||
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
||
|
||
exp_attn_weights = torch.exp(attn_weights - mc)
|
||
|
||
if exists(row_mask):
|
||
exp_attn_weights.masked_fill_(~row_mask, 0.)
|
||
|
||
p = exp_attn_weights / lc
|
||
|
||
dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc)
|
||
dp = einsum('... i d, ... j d -> ... i j', doc, vc)
|
||
|
||
D = (doc * oc).sum(dim=-1, keepdims=True)
|
||
ds = p * scale * (dp - D)
|
||
|
||
dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc)
|
||
dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc)
|
||
|
||
dqc.add_(dq_chunk)
|
||
dkc.add_(dk_chunk)
|
||
dvc.add_(dv_chunk)
|
||
|
||
return dq, dk, dv, None, None, None, None
|
||
|
||
|
||
def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers):
|
||
if mem_eff_attn:
|
||
replace_unet_cross_attn_to_memory_efficient()
|
||
elif xformers:
|
||
replace_unet_cross_attn_to_xformers()
|
||
|
||
|
||
def replace_unet_cross_attn_to_memory_efficient():
|
||
print("Replace CrossAttention.forward to use FlashAttention (not xformers)")
|
||
flash_func = FlashAttentionFunction
|
||
|
||
def forward_flash_attn(self, x, context=None, mask=None):
|
||
q_bucket_size = 512
|
||
k_bucket_size = 1024
|
||
|
||
h = self.heads
|
||
q = self.to_q(x)
|
||
|
||
context = context if context is not None else x
|
||
context = context.to(x.dtype)
|
||
|
||
if hasattr(self, 'hypernetwork') and self.hypernetwork is not None:
|
||
context_k, context_v = self.hypernetwork.forward(x, context)
|
||
context_k = context_k.to(x.dtype)
|
||
context_v = context_v.to(x.dtype)
|
||
else:
|
||
context_k = context
|
||
context_v = context
|
||
|
||
k = self.to_k(context_k)
|
||
v = self.to_v(context_v)
|
||
del context, x
|
||
|
||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
|
||
|
||
out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size)
|
||
|
||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||
|
||
# diffusers 0.7.0~ わざわざ変えるなよ (;´Д`)
|
||
out = self.to_out[0](out)
|
||
out = self.to_out[1](out)
|
||
return out
|
||
|
||
diffusers.models.attention.CrossAttention.forward = forward_flash_attn
|
||
|
||
|
||
def replace_unet_cross_attn_to_xformers():
|
||
print("Replace CrossAttention.forward to use xformers")
|
||
try:
|
||
import xformers.ops
|
||
except ImportError:
|
||
raise ImportError("No xformers / xformersがインストールされていないようです")
|
||
|
||
def forward_xformers(self, x, context=None, mask=None):
|
||
h = self.heads
|
||
q_in = self.to_q(x)
|
||
|
||
context = default(context, x)
|
||
context = context.to(x.dtype)
|
||
|
||
if hasattr(self, 'hypernetwork') and self.hypernetwork is not None:
|
||
context_k, context_v = self.hypernetwork.forward(x, context)
|
||
context_k = context_k.to(x.dtype)
|
||
context_v = context_v.to(x.dtype)
|
||
else:
|
||
context_k = context
|
||
context_v = context
|
||
|
||
k_in = self.to_k(context_k)
|
||
v_in = self.to_v(context_v)
|
||
|
||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
|
||
del q_in, k_in, v_in
|
||
|
||
q = q.contiguous()
|
||
k = k.contiguous()
|
||
v = v.contiguous()
|
||
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる
|
||
|
||
out = rearrange(out, 'b n h d -> b n (h d)', h=h)
|
||
|
||
# diffusers 0.7.0~
|
||
out = self.to_out[0](out)
|
||
out = self.to_out[1](out)
|
||
return out
|
||
|
||
diffusers.models.attention.CrossAttention.forward = forward_xformers
|
||
# endregion
|
||
|
||
|
||
# region arguments
|
||
|
||
def add_sd_models_arguments(parser: argparse.ArgumentParser):
|
||
# for pretrained models
|
||
parser.add_argument("--v2", action='store_true',
|
||
help='load Stable Diffusion v2.0 model / Stable Diffusion 2.0のモデルを読み込む')
|
||
parser.add_argument("--v_parameterization", action='store_true',
|
||
help='enable v-parameterization training / v-parameterization学習を有効にする')
|
||
parser.add_argument("--pretrained_model_name_or_path", type=str, default=None,
|
||
help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル")
|
||
|
||
|
||
def add_training_arguments(parser: argparse.ArgumentParser, support_dreambooth: bool):
|
||
parser.add_argument("--output_dir", type=str, default=None,
|
||
help="directory to output trained model / 学習後のモデル出力先ディレクトリ")
|
||
parser.add_argument("--output_name", type=str, default=None,
|
||
help="base name of trained model file / 学習後のモデルの拡張子を除くファイル名")
|
||
parser.add_argument("--save_precision", type=str, default=None,
|
||
choices=[None, "float", "fp16", "bf16"], help="precision in saving / 保存時に精度を変更して保存する")
|
||
parser.add_argument("--save_every_n_epochs", type=int, default=None,
|
||
help="save checkpoint every N epochs / 学習中のモデルを指定エポックごとに保存する")
|
||
parser.add_argument("--save_n_epoch_ratio", type=int, default=None,
|
||
help="save checkpoint N epoch ratio (for example 5 means save at least 5 files total) / 学習中のモデルを指定のエポック割合で保存する(たとえば5を指定すると最低5個のファイルが保存される)")
|
||
parser.add_argument("--save_last_n_epochs", type=int, default=None, help="save last N checkpoints / 最大Nエポック保存する")
|
||
parser.add_argument("--save_last_n_epochs_state", type=int, default=None,
|
||
help="save last N checkpoints of state (overrides the value of --save_last_n_epochs)/ 最大Nエポックstateを保存する(--save_last_n_epochsの指定を上書きします)")
|
||
parser.add_argument("--save_state", action="store_true",
|
||
help="save training state additionally (including optimizer states etc.) / optimizerなど学習状態も含めたstateを追加で保存する")
|
||
parser.add_argument("--resume", type=str, default=None, help="saved state to resume training / 学習再開するモデルのstate")
|
||
|
||
parser.add_argument("--train_batch_size", type=int, default=1, help="batch size for training / 学習時のバッチサイズ")
|
||
parser.add_argument("--max_token_length", type=int, default=None, choices=[None, 150, 225],
|
||
help="max token length of text encoder (default for 75, 150 or 225) / text encoderのトークンの最大長(未指定で75、150または225が指定可)")
|
||
parser.add_argument("--use_8bit_adam", action="store_true",
|
||
help="use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使う(bitsandbytesのインストールが必要)")
|
||
parser.add_argument("--mem_eff_attn", action="store_true",
|
||
help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う")
|
||
parser.add_argument("--xformers", action="store_true",
|
||
help="use xformers for CrossAttention / CrossAttentionにxformersを使う")
|
||
parser.add_argument("--vae", type=str, default=None,
|
||
help="path to checkpoint of vae to replace / VAEを入れ替える場合、VAEのcheckpointファイルまたはディレクトリ")
|
||
|
||
parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率")
|
||
parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数")
|
||
parser.add_argument("--max_train_epochs", type=int, default=None,
|
||
help="training epochs (overrides max_train_steps) / 学習エポック数(max_train_stepsを上書きします)")
|
||
parser.add_argument("--max_data_loader_n_workers", type=int, default=8,
|
||
help="max num workers for DataLoader (lower is less main RAM usage, faster epoch start and slower data loading) / DataLoaderの最大プロセス数(小さい値ではメインメモリの使用量が減りエポック間の待ち時間が減りますが、データ読み込みは遅くなります)")
|
||
parser.add_argument("--persistent_data_loader_workers", action="store_true",
|
||
help="persistent DataLoader workers (useful for reduce time gap between epoch, but may use more memory) / DataLoader のワーカーを持続させる (エポック間の時間差を少なくするのに有効だが、より多くのメモリを消費する可能性がある)")
|
||
parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed")
|
||
parser.add_argument("--gradient_checkpointing", action="store_true",
|
||
help="enable gradient checkpointing / grandient checkpointingを有効にする")
|
||
parser.add_argument("--gradient_accumulation_steps", type=int, default=1,
|
||
help="Number of updates steps to accumulate before performing a backward/update pass / 学習時に逆伝播をする前に勾配を合計するステップ数")
|
||
parser.add_argument("--mixed_precision", type=str, default="no",
|
||
choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度")
|
||
parser.add_argument("--full_fp16", action="store_true", help="fp16 training including gradients / 勾配も含めてfp16で学習する")
|
||
parser.add_argument("--clip_skip", type=int, default=None,
|
||
help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いる(nは1以上)")
|
||
parser.add_argument("--logging_dir", type=str, default=None,
|
||
help="enable logging and output TensorBoard log to this directory / ログ出力を有効にしてこのディレクトリにTensorBoard用のログを出力する")
|
||
parser.add_argument("--log_prefix", type=str, default=None, help="add prefix for each log directory / ログディレクトリ名の先頭に追加する文字列")
|
||
parser.add_argument("--lr_scheduler", type=str, default="constant",
|
||
help="scheduler to use for learning rate / 学習率のスケジューラ: linear, cosine, cosine_with_restarts, polynomial, constant (default), constant_with_warmup")
|
||
parser.add_argument("--lr_warmup_steps", type=int, default=0,
|
||
help="Number of steps for the warmup in the lr scheduler (default is 0) / 学習率のスケジューラをウォームアップするステップ数(デフォルト0)")
|
||
|
||
if support_dreambooth:
|
||
# DreamBooth training
|
||
parser.add_argument("--prior_loss_weight", type=float, default=1.0,
|
||
help="loss weight for regularization images / 正則化画像のlossの重み")
|
||
|
||
|
||
def verify_training_args(args: argparse.Namespace):
|
||
if args.v_parameterization and not args.v2:
|
||
print("v_parameterization should be with v2 / v1でv_parameterizationを使用することは想定されていません")
|
||
if args.v2 and args.clip_skip is not None:
|
||
print("v2 with clip_skip will be unexpected / v2でclip_skipを使用することは想定されていません")
|
||
|
||
|
||
def add_dataset_arguments(parser: argparse.ArgumentParser, support_dreambooth: bool, support_caption: bool):
|
||
# dataset common
|
||
parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ")
|
||
parser.add_argument("--shuffle_caption", action="store_true",
|
||
help="shuffle comma-separated caption / コンマで区切られたcaptionの各要素をshuffleする")
|
||
parser.add_argument("--caption_extension", type=str, default=".caption", help="extension of caption files / 読み込むcaptionファイルの拡張子")
|
||
parser.add_argument("--caption_extention", type=str, default=None,
|
||
help="extension of caption files (backward compatibility) / 読み込むcaptionファイルの拡張子(スペルミスを残してあります)")
|
||
parser.add_argument("--keep_tokens", type=int, default=None,
|
||
help="keep heading N tokens when shuffling caption tokens / captionのシャッフル時に、先頭からこの個数のトークンをシャッフルしないで残す")
|
||
parser.add_argument("--color_aug", action="store_true", help="enable weak color augmentation / 学習時に色合いのaugmentationを有効にする")
|
||
parser.add_argument("--flip_aug", action="store_true", help="enable horizontal flip augmentation / 学習時に左右反転のaugmentationを有効にする")
|
||
parser.add_argument("--face_crop_aug_range", type=str, default=None,
|
||
help="enable face-centered crop augmentation and its range (e.g. 2.0,4.0) / 学習時に顔を中心とした切り出しaugmentationを有効にするときは倍率を指定する(例:2.0,4.0)")
|
||
parser.add_argument("--random_crop", action="store_true",
|
||
help="enable random crop (for style training in face-centered crop augmentation) / ランダムな切り出しを有効にする(顔を中心としたaugmentationを行うときに画風の学習用に指定する)")
|
||
parser.add_argument("--debug_dataset", action="store_true",
|
||
help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)")
|
||
parser.add_argument("--resolution", type=str, default=None,
|
||
help="resolution in training ('size' or 'width,height') / 学習時の画像解像度('サイズ'指定、または'幅,高さ'指定)")
|
||
parser.add_argument("--cache_latents", action="store_true",
|
||
help="cache latents to reduce memory (augmentations must be disabled) / メモリ削減のためにlatentをcacheする(augmentationは使用不可)")
|
||
parser.add_argument("--enable_bucket", action="store_true",
|
||
help="enable buckets for multi aspect ratio training / 複数解像度学習のためのbucketを有効にする")
|
||
parser.add_argument("--min_bucket_reso", type=int, default=256, help="minimum resolution for buckets / bucketの最小解像度")
|
||
parser.add_argument("--max_bucket_reso", type=int, default=1024, help="maximum resolution for buckets / bucketの最大解像度")
|
||
parser.add_argument("--bucket_reso_steps", type=int, default=64,
|
||
help="steps of resolution for buckets, divisible by 8 is recommended / bucketの解像度の単位、8で割り切れる値を推奨します")
|
||
parser.add_argument("--bucket_no_upscale", action="store_true",
|
||
help="make bucket for each image without upscaling / 画像を拡大せずbucketを作成します")
|
||
|
||
if support_dreambooth:
|
||
# DreamBooth dataset
|
||
parser.add_argument("--reg_data_dir", type=str, default=None, help="directory for regularization images / 正則化画像データのディレクトリ")
|
||
|
||
if support_caption:
|
||
# caption dataset
|
||
parser.add_argument("--in_json", type=str, default=None, help="json metadata for dataset / データセットのmetadataのjsonファイル")
|
||
parser.add_argument("--dataset_repeats", type=int, default=1,
|
||
help="repeat dataset when training with captions / キャプションでの学習時にデータセットを繰り返す回数")
|
||
|
||
|
||
def add_sd_saving_arguments(parser: argparse.ArgumentParser):
|
||
parser.add_argument("--save_model_as", type=str, default=None, choices=[None, "ckpt", "safetensors", "diffusers", "diffusers_safetensors"],
|
||
help="format to save the model (default is same to original) / モデル保存時の形式(未指定時は元モデルと同じ)")
|
||
parser.add_argument("--use_safetensors", action='store_true',
|
||
help="use safetensors format to save (if save_model_as is not specified) / checkpoint、モデルをsafetensors形式で保存する(save_model_as未指定時)")
|
||
|
||
# endregion
|
||
|
||
# region utils
|
||
|
||
|
||
def prepare_dataset_args(args: argparse.Namespace, support_metadata: bool):
|
||
# backward compatibility
|
||
if args.caption_extention is not None:
|
||
args.caption_extension = args.caption_extention
|
||
args.caption_extention = None
|
||
|
||
if args.cache_latents:
|
||
assert not args.color_aug, "when caching latents, color_aug cannot be used / latentをキャッシュするときはcolor_augは使えません"
|
||
assert not args.random_crop, "when caching latents, random_crop cannot be used / latentをキャッシュするときはrandom_cropは使えません"
|
||
|
||
# assert args.resolution is not None, f"resolution is required / resolution(解像度)を指定してください"
|
||
if args.resolution is not None:
|
||
args.resolution = tuple([int(r) for r in args.resolution.split(',')])
|
||
if len(args.resolution) == 1:
|
||
args.resolution = (args.resolution[0], args.resolution[0])
|
||
assert len(args.resolution) == 2, \
|
||
f"resolution must be 'size' or 'width,height' / resolution(解像度)は'サイズ'または'幅','高さ'で指定してください: {args.resolution}"
|
||
|
||
if args.face_crop_aug_range is not None:
|
||
args.face_crop_aug_range = tuple([float(r) for r in args.face_crop_aug_range.split(',')])
|
||
assert len(args.face_crop_aug_range) == 2 and args.face_crop_aug_range[0] <= args.face_crop_aug_range[1], \
|
||
f"face_crop_aug_range must be two floats / face_crop_aug_rangeは'下限,上限'で指定してください: {args.face_crop_aug_range}"
|
||
else:
|
||
args.face_crop_aug_range = None
|
||
|
||
if support_metadata:
|
||
if args.in_json is not None and (args.color_aug or args.random_crop):
|
||
print(f"latents in npz is ignored when color_aug or random_crop is True / color_augまたはrandom_cropを有効にした場合、npzファイルのlatentsは無視されます")
|
||
|
||
|
||
def load_tokenizer(args: argparse.Namespace):
|
||
print("prepare tokenizer")
|
||
if args.v2:
|
||
tokenizer = CLIPTokenizer.from_pretrained(V2_STABLE_DIFFUSION_PATH, subfolder="tokenizer")
|
||
else:
|
||
tokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH)
|
||
if args.max_token_length is not None:
|
||
print(f"update token length: {args.max_token_length}")
|
||
return tokenizer
|
||
|
||
|
||
def prepare_accelerator(args: argparse.Namespace):
|
||
if args.logging_dir is None:
|
||
log_with = None
|
||
logging_dir = None
|
||
else:
|
||
log_with = "tensorboard"
|
||
log_prefix = "" if args.log_prefix is None else args.log_prefix
|
||
logging_dir = args.logging_dir + "/" + log_prefix + time.strftime('%Y%m%d%H%M%S', time.localtime())
|
||
|
||
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision,
|
||
log_with=log_with, logging_dir=logging_dir)
|
||
|
||
# accelerateの互換性問題を解決する
|
||
accelerator_0_15 = True
|
||
try:
|
||
accelerator.unwrap_model("dummy", True)
|
||
print("Using accelerator 0.15.0 or above.")
|
||
except TypeError:
|
||
accelerator_0_15 = False
|
||
|
||
def unwrap_model(model):
|
||
if accelerator_0_15:
|
||
return accelerator.unwrap_model(model, True)
|
||
return accelerator.unwrap_model(model)
|
||
|
||
return accelerator, unwrap_model
|
||
|
||
|
||
def prepare_dtype(args: argparse.Namespace):
|
||
weight_dtype = torch.float32
|
||
if args.mixed_precision == "fp16":
|
||
weight_dtype = torch.float16
|
||
elif args.mixed_precision == "bf16":
|
||
weight_dtype = torch.bfloat16
|
||
|
||
save_dtype = None
|
||
if args.save_precision == "fp16":
|
||
save_dtype = torch.float16
|
||
elif args.save_precision == "bf16":
|
||
save_dtype = torch.bfloat16
|
||
elif args.save_precision == "float":
|
||
save_dtype = torch.float32
|
||
|
||
return weight_dtype, save_dtype
|
||
|
||
|
||
def load_target_model(args: argparse.Namespace, weight_dtype):
|
||
load_stable_diffusion_format = os.path.isfile(args.pretrained_model_name_or_path) # determine SD or Diffusers
|
||
if load_stable_diffusion_format:
|
||
print("load StableDiffusion checkpoint")
|
||
text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.pretrained_model_name_or_path)
|
||
else:
|
||
print("load Diffusers pretrained models")
|
||
pipe = StableDiffusionPipeline.from_pretrained(args.pretrained_model_name_or_path, tokenizer=None, safety_checker=None)
|
||
text_encoder = pipe.text_encoder
|
||
vae = pipe.vae
|
||
unet = pipe.unet
|
||
del pipe
|
||
|
||
# VAEを読み込む
|
||
if args.vae is not None:
|
||
vae = model_util.load_vae(args.vae, weight_dtype)
|
||
print("additional VAE loaded")
|
||
|
||
return text_encoder, vae, unet, load_stable_diffusion_format
|
||
|
||
|
||
def patch_accelerator_for_fp16_training(accelerator):
|
||
org_unscale_grads = accelerator.scaler._unscale_grads_
|
||
|
||
def _unscale_grads_replacer(optimizer, inv_scale, found_inf, allow_fp16):
|
||
return org_unscale_grads(optimizer, inv_scale, found_inf, True)
|
||
|
||
accelerator.scaler._unscale_grads_ = _unscale_grads_replacer
|
||
|
||
|
||
def get_hidden_states(args: argparse.Namespace, input_ids, tokenizer, text_encoder, weight_dtype=None):
|
||
# with no_token_padding, the length is not max length, return result immediately
|
||
if input_ids.size()[-1] != tokenizer.model_max_length:
|
||
return text_encoder(input_ids)[0]
|
||
|
||
b_size = input_ids.size()[0]
|
||
input_ids = input_ids.reshape((-1, tokenizer.model_max_length)) # batch_size*3, 77
|
||
|
||
if args.clip_skip is None:
|
||
encoder_hidden_states = text_encoder(input_ids)[0]
|
||
else:
|
||
enc_out = text_encoder(input_ids, output_hidden_states=True, return_dict=True)
|
||
encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip]
|
||
if weight_dtype is not None:
|
||
# this is required for additional network training
|
||
encoder_hidden_states = encoder_hidden_states.to(weight_dtype)
|
||
encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states)
|
||
|
||
# bs*3, 77, 768 or 1024
|
||
encoder_hidden_states = encoder_hidden_states.reshape((b_size, -1, encoder_hidden_states.shape[-1]))
|
||
|
||
if args.max_token_length is not None:
|
||
if args.v2:
|
||
# v2: <BOS>...<EOS> <PAD> ... の三連を <BOS>...<EOS> <PAD> ... へ戻す 正直この実装でいいのかわからん
|
||
states_list = [encoder_hidden_states[:, 0].unsqueeze(1)] # <BOS>
|
||
for i in range(1, args.max_token_length, tokenizer.model_max_length):
|
||
chunk = encoder_hidden_states[:, i:i + tokenizer.model_max_length - 2] # <BOS> の後から 最後の前まで
|
||
if i > 0:
|
||
for j in range(len(chunk)):
|
||
if input_ids[j, 1] == tokenizer.eos_token: # 空、つまり <BOS> <EOS> <PAD> ...のパターン
|
||
chunk[j, 0] = chunk[j, 1] # 次の <PAD> の値をコピーする
|
||
states_list.append(chunk) # <BOS> の後から <EOS> の前まで
|
||
states_list.append(encoder_hidden_states[:, -1].unsqueeze(1)) # <EOS> か <PAD> のどちらか
|
||
encoder_hidden_states = torch.cat(states_list, dim=1)
|
||
else:
|
||
# v1: <BOS>...<EOS> の三連を <BOS>...<EOS> へ戻す
|
||
states_list = [encoder_hidden_states[:, 0].unsqueeze(1)] # <BOS>
|
||
for i in range(1, args.max_token_length, tokenizer.model_max_length):
|
||
states_list.append(encoder_hidden_states[:, i:i + tokenizer.model_max_length - 2]) # <BOS> の後から <EOS> の前まで
|
||
states_list.append(encoder_hidden_states[:, -1].unsqueeze(1)) # <EOS>
|
||
encoder_hidden_states = torch.cat(states_list, dim=1)
|
||
|
||
return encoder_hidden_states
|
||
|
||
|
||
def get_epoch_ckpt_name(args: argparse.Namespace, use_safetensors, epoch):
|
||
model_name = DEFAULT_EPOCH_NAME if args.output_name is None else args.output_name
|
||
ckpt_name = EPOCH_FILE_NAME.format(model_name, epoch) + (".safetensors" if use_safetensors else ".ckpt")
|
||
return model_name, ckpt_name
|
||
|
||
|
||
def save_on_epoch_end(args: argparse.Namespace, save_func, remove_old_func, epoch_no: int, num_train_epochs: int):
|
||
saving = epoch_no % args.save_every_n_epochs == 0 and epoch_no < num_train_epochs
|
||
if saving:
|
||
os.makedirs(args.output_dir, exist_ok=True)
|
||
save_func()
|
||
|
||
if args.save_last_n_epochs is not None:
|
||
remove_epoch_no = epoch_no - args.save_every_n_epochs * args.save_last_n_epochs
|
||
remove_old_func(remove_epoch_no)
|
||
return saving
|
||
|
||
|
||
def save_sd_model_on_epoch_end(args: argparse.Namespace, accelerator, src_path: str, save_stable_diffusion_format: bool, use_safetensors: bool, save_dtype: torch.dtype, epoch: int, num_train_epochs: int, global_step: int, text_encoder, unet, vae):
|
||
epoch_no = epoch + 1
|
||
model_name, ckpt_name = get_epoch_ckpt_name(args, use_safetensors, epoch_no)
|
||
|
||
if save_stable_diffusion_format:
|
||
def save_sd():
|
||
ckpt_file = os.path.join(args.output_dir, ckpt_name)
|
||
print(f"saving checkpoint: {ckpt_file}")
|
||
model_util.save_stable_diffusion_checkpoint(args.v2, ckpt_file, text_encoder, unet,
|
||
src_path, epoch_no, global_step, save_dtype, vae)
|
||
|
||
def remove_sd(old_epoch_no):
|
||
_, old_ckpt_name = get_epoch_ckpt_name(args, use_safetensors, old_epoch_no)
|
||
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
|
||
if os.path.exists(old_ckpt_file):
|
||
print(f"removing old checkpoint: {old_ckpt_file}")
|
||
os.remove(old_ckpt_file)
|
||
|
||
save_func = save_sd
|
||
remove_old_func = remove_sd
|
||
else:
|
||
def save_du():
|
||
out_dir = os.path.join(args.output_dir, EPOCH_DIFFUSERS_DIR_NAME.format(model_name, epoch_no))
|
||
print(f"saving model: {out_dir}")
|
||
os.makedirs(out_dir, exist_ok=True)
|
||
model_util.save_diffusers_checkpoint(args.v2, out_dir, text_encoder, unet,
|
||
src_path, vae=vae, use_safetensors=use_safetensors)
|
||
|
||
def remove_du(old_epoch_no):
|
||
out_dir_old = os.path.join(args.output_dir, EPOCH_DIFFUSERS_DIR_NAME.format(model_name, old_epoch_no))
|
||
if os.path.exists(out_dir_old):
|
||
print(f"removing old model: {out_dir_old}")
|
||
shutil.rmtree(out_dir_old)
|
||
|
||
save_func = save_du
|
||
remove_old_func = remove_du
|
||
|
||
saving = save_on_epoch_end(args, save_func, remove_old_func, epoch_no, num_train_epochs)
|
||
if saving and args.save_state:
|
||
save_state_on_epoch_end(args, accelerator, model_name, epoch_no)
|
||
|
||
|
||
def save_state_on_epoch_end(args: argparse.Namespace, accelerator, model_name, epoch_no):
|
||
print("saving state.")
|
||
accelerator.save_state(os.path.join(args.output_dir, EPOCH_STATE_NAME.format(model_name, epoch_no)))
|
||
|
||
last_n_epochs = args.save_last_n_epochs_state if args.save_last_n_epochs_state else args.save_last_n_epochs
|
||
if last_n_epochs is not None:
|
||
remove_epoch_no = epoch_no - args.save_every_n_epochs * last_n_epochs
|
||
state_dir_old = os.path.join(args.output_dir, EPOCH_STATE_NAME.format(model_name, remove_epoch_no))
|
||
if os.path.exists(state_dir_old):
|
||
print(f"removing old state: {state_dir_old}")
|
||
shutil.rmtree(state_dir_old)
|
||
|
||
|
||
def save_sd_model_on_train_end(args: argparse.Namespace, src_path: str, save_stable_diffusion_format: bool, use_safetensors: bool, save_dtype: torch.dtype, epoch: int, global_step: int, text_encoder, unet, vae):
|
||
model_name = DEFAULT_LAST_OUTPUT_NAME if args.output_name is None else args.output_name
|
||
|
||
if save_stable_diffusion_format:
|
||
os.makedirs(args.output_dir, exist_ok=True)
|
||
|
||
ckpt_name = model_name + (".safetensors" if use_safetensors else ".ckpt")
|
||
ckpt_file = os.path.join(args.output_dir, ckpt_name)
|
||
|
||
print(f"save trained model as StableDiffusion checkpoint to {ckpt_file}")
|
||
model_util.save_stable_diffusion_checkpoint(args.v2, ckpt_file, text_encoder, unet,
|
||
src_path, epoch, global_step, save_dtype, vae)
|
||
else:
|
||
out_dir = os.path.join(args.output_dir, model_name)
|
||
os.makedirs(out_dir, exist_ok=True)
|
||
|
||
print(f"save trained model as Diffusers to {out_dir}")
|
||
model_util.save_diffusers_checkpoint(args.v2, out_dir, text_encoder, unet,
|
||
src_path, vae=vae, use_safetensors=use_safetensors)
|
||
|
||
|
||
def save_state_on_train_end(args: argparse.Namespace, accelerator):
|
||
print("saving last state.")
|
||
os.makedirs(args.output_dir, exist_ok=True)
|
||
model_name = DEFAULT_LAST_OUTPUT_NAME if args.output_name is None else args.output_name
|
||
accelerator.save_state(os.path.join(args.output_dir, LAST_STATE_NAME.format(model_name)))
|
||
|
||
# endregion
|
||
|
||
# region 前処理用
|
||
|
||
|
||
class ImageLoadingDataset(torch.utils.data.Dataset):
|
||
def __init__(self, image_paths):
|
||
self.images = image_paths
|
||
|
||
def __len__(self):
|
||
return len(self.images)
|
||
|
||
def __getitem__(self, idx):
|
||
img_path = self.images[idx]
|
||
|
||
try:
|
||
image = Image.open(img_path).convert("RGB")
|
||
# convert to tensor temporarily so dataloader will accept it
|
||
tensor_pil = transforms.functional.pil_to_tensor(image)
|
||
except Exception as e:
|
||
print(f"Could not load image path / 画像を読み込めません: {img_path}, error: {e}")
|
||
return None
|
||
|
||
return (tensor_pil, img_path)
|
||
|
||
|
||
# endregion |