KohyaSS/library/dreambooth_folder_creation_gui.py
2022-12-18 13:11:10 -05:00

198 lines
7.0 KiB
Python

import gradio as gr
from easygui import diropenbox, msgbox
from .common_gui import get_folder_path
import shutil
import os
def copy_info_to_Directories_tab(training_folder):
img_folder = os.path.join(training_folder, 'img')
if os.path.exists(os.path.join(training_folder, 'reg')):
reg_folder = os.path.join(training_folder, 'reg')
else:
reg_folder = ''
model_folder = os.path.join(training_folder, 'model')
log_folder = os.path.join(training_folder, 'log')
return img_folder, reg_folder, model_folder, log_folder
def dreambooth_folder_preparation(
util_training_images_dir_input,
util_training_images_repeat_input,
util_instance_prompt_input,
util_regularization_images_dir_input,
util_regularization_images_repeat_input,
util_class_prompt_input,
util_training_dir_output,
):
# Check if the input variables are empty
if not len(util_training_dir_output):
print(
"Destination training directory is missing... can't perform the required task..."
)
return
else:
# Create the util_training_dir_output directory if it doesn't exist
os.makedirs(util_training_dir_output, exist_ok=True)
# Check for instance prompt
if util_instance_prompt_input == '':
msgbox('Instance prompt missing...')
return
# Check for class prompt
if util_class_prompt_input == '':
msgbox('Class prompt missing...')
return
# Create the training_dir path
if util_training_images_dir_input == '':
print(
"Training images directory is missing... can't perform the required task..."
)
return
else:
training_dir = os.path.join(
util_training_dir_output,
f'img/{int(util_training_images_repeat_input)}_{util_instance_prompt_input} {util_class_prompt_input}',
)
# Remove folders if they exist
if os.path.exists(training_dir):
print(f'Removing existing directory {training_dir}...')
shutil.rmtree(training_dir)
# Copy the training images to their respective directories
print(f'Copy {util_training_images_dir_input} to {training_dir}...')
shutil.copytree(util_training_images_dir_input, training_dir)
# Create the regularization_dir path
if (
util_class_prompt_input == ''
or not util_regularization_images_repeat_input > 0
):
print(
'Regularization images directory or repeats is missing... not copying regularisation images...'
)
else:
regularization_dir = os.path.join(
util_training_dir_output,
f'reg/{int(util_regularization_images_repeat_input)}_{util_class_prompt_input}',
)
# Remove folders if they exist
if os.path.exists(regularization_dir):
print(f'Removing existing directory {regularization_dir}...')
shutil.rmtree(regularization_dir)
# Copy the regularisation images to their respective directories
print(
f'Copy {util_regularization_images_dir_input} to {regularization_dir}...'
)
shutil.copytree(
util_regularization_images_dir_input, regularization_dir
)
print(
f'Done creating kohya_ss training folder structure at {util_training_dir_output}...'
)
def gradio_dreambooth_folder_creation_tab(
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
logging_dir_input,
):
with gr.Tab('Dreambooth folder preparation'):
gr.Markdown(
'This utility will create the necessary folder structure for the training images and optional regularization images needed for the kohys_ss Dreambooth method to function correctly.'
)
with gr.Row():
util_instance_prompt_input = gr.Textbox(
label='Instance prompt',
placeholder='Eg: asd',
interactive=True,
)
util_class_prompt_input = gr.Textbox(
label='Class prompt',
placeholder='Eg: person',
interactive=True,
)
with gr.Row():
util_training_images_dir_input = gr.Textbox(
label='Training images',
placeholder='Directory containing the training images',
interactive=True,
)
button_util_training_images_dir_input = gr.Button(
'📂', elem_id='open_folder_small'
)
button_util_training_images_dir_input.click(
get_folder_path, outputs=util_training_images_dir_input
)
util_training_images_repeat_input = gr.Number(
label='Repeats',
value=40,
interactive=True,
elem_id='number_input',
)
with gr.Row():
util_regularization_images_dir_input = gr.Textbox(
label='Regularisation images',
placeholder='(Optional) Directory containing the regularisation images',
interactive=True,
)
button_util_regularization_images_dir_input = gr.Button(
'📂', elem_id='open_folder_small'
)
button_util_regularization_images_dir_input.click(
get_folder_path, outputs=util_regularization_images_dir_input
)
util_regularization_images_repeat_input = gr.Number(
label='Repeats',
value=1,
interactive=True,
elem_id='number_input',
)
with gr.Row():
util_training_dir_output = gr.Textbox(
label='Destination training directory',
placeholder='Directory where formatted training and regularisation folders will be placed',
interactive=True,
)
button_util_training_dir_output = gr.Button(
'📂', elem_id='open_folder_small'
)
button_util_training_dir_output.click(
get_folder_path, outputs=util_training_dir_output
)
button_prepare_training_data = gr.Button('Prepare training data')
button_prepare_training_data.click(
dreambooth_folder_preparation,
inputs=[
util_training_images_dir_input,
util_training_images_repeat_input,
util_instance_prompt_input,
util_regularization_images_dir_input,
util_regularization_images_repeat_input,
util_class_prompt_input,
util_training_dir_output,
],
)
button_copy_info_to_Directories_tab = gr.Button(
'Copy info to Directories Tab'
)
button_copy_info_to_Directories_tab.click(
copy_info_to_Directories_tab,
inputs=[util_training_dir_output],
outputs=[
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
logging_dir_input,
],
)