KohyaSS/library/dreambooth_folder_creation_gui.py
JSTayco 7b5639cff5 Huge WIP
This is a massive WIP and should not be trusted or used right now. However, major milestones have been crossed. Both message boxes and file dialogs are now properly subprocessed and work on macOS. I think by extension, it may work on runpod environments as well, but that remains to be tested.
2023-03-30 01:40:00 -07:00

212 lines
7.8 KiB
Python

import os
import shutil
import gradio as gr
from .common_gui import get_folder_path
def copy_info_to_Folders_tab(training_folder):
img_folder = os.path.join(training_folder, 'img')
if os.path.exists(os.path.join(training_folder, 'reg')):
reg_folder = os.path.join(training_folder, 'reg')
else:
reg_folder = ''
model_folder = os.path.join(training_folder, 'model')
log_folder = os.path.join(training_folder, 'log')
return img_folder, reg_folder, model_folder, log_folder
def dreambooth_folder_preparation(
util_training_images_dir_input,
util_training_images_repeat_input,
util_instance_prompt_input,
util_regularization_images_dir_input,
util_regularization_images_repeat_input,
util_class_prompt_input,
util_training_dir_output,
):
# Check if the input variables are empty
if not len(util_training_dir_output):
print(
"Destination training directory is missing... can't perform the required task..."
)
return
else:
# Create the util_training_dir_output directory if it doesn't exist
os.makedirs(util_training_dir_output, exist_ok=True)
# Check for instance prompt
if util_instance_prompt_input == '':
show_message_box('Instance prompt missing...')
return
# Check for class prompt
if util_class_prompt_input == '':
show_message_box('Class prompt missing...')
return
# Create the training_dir path
if util_training_images_dir_input == '':
print(
"Training images directory is missing... can't perform the required task..."
)
return
else:
training_dir = os.path.join(
util_training_dir_output,
f'img/{int(util_training_images_repeat_input)}_{util_instance_prompt_input} {util_class_prompt_input}',
)
# Remove folders if they exist
if os.path.exists(training_dir):
print(f'Removing existing directory {training_dir}...')
shutil.rmtree(training_dir)
# Copy the training images to their respective directories
print(f'Copy {util_training_images_dir_input} to {training_dir}...')
shutil.copytree(util_training_images_dir_input, training_dir)
if not util_regularization_images_dir_input == '':
# Create the regularization_dir path
if not util_regularization_images_repeat_input > 0:
print('Repeats is missing... not copying regularisation images...')
else:
regularization_dir = os.path.join(
util_training_dir_output,
f'reg/{int(util_regularization_images_repeat_input)}_{util_class_prompt_input}',
)
# Remove folders if they exist
if os.path.exists(regularization_dir):
print(f'Removing existing directory {regularization_dir}...')
shutil.rmtree(regularization_dir)
# Copy the regularisation images to their respective directories
print(
f'Copy {util_regularization_images_dir_input} to {regularization_dir}...'
)
shutil.copytree(
util_regularization_images_dir_input, regularization_dir
)
else:
print(
'Regularization images directory is missing... not copying regularisation images...'
)
# create log and model folder
# Check if the log folder exists and create it if it doesn't
if not os.path.exists(os.path.join(util_training_dir_output, 'log')):
os.makedirs(os.path.join(util_training_dir_output, 'log'))
# Check if the model folder exists and create it if it doesn't
if not os.path.exists(os.path.join(util_training_dir_output, 'model')):
os.makedirs(os.path.join(util_training_dir_output, 'model'))
print(
f'Done creating kohya_ss training folder structure at {util_training_dir_output}...'
)
def gradio_dreambooth_folder_creation_tab(
train_data_dir_input=gr.Textbox(),
reg_data_dir_input=gr.Textbox(),
output_dir_input=gr.Textbox(),
logging_dir_input=gr.Textbox(),
):
with gr.Tab('Dreambooth/LoRA Folder preparation'):
gr.Markdown(
'This utility will create the necessary folder structure for the training images and optional regularization images needed for the kohys_ss Dreambooth/LoRA method to function correctly.'
)
with gr.Row():
util_instance_prompt_input = gr.Textbox(
label='Instance prompt',
placeholder='Eg: asd',
interactive=True,
)
util_class_prompt_input = gr.Textbox(
label='Class prompt',
placeholder='Eg: person',
interactive=True,
)
with gr.Row():
util_training_images_dir_input = gr.Textbox(
label='Training images',
placeholder='Directory containing the training images',
interactive=True,
)
button_util_training_images_dir_input = gr.Button(
'📂', elem_id='open_folder_small'
)
button_util_training_images_dir_input.click(
get_folder_path,
outputs=util_training_images_dir_input,
show_progress=False,
)
util_training_images_repeat_input = gr.Number(
label='Repeats',
value=40,
interactive=True,
elem_id='number_input',
)
with gr.Row():
util_regularization_images_dir_input = gr.Textbox(
label='Regularisation images',
placeholder='(Optional) Directory containing the regularisation images',
interactive=True,
)
button_util_regularization_images_dir_input = gr.Button(
'📂', elem_id='open_folder_small'
)
button_util_regularization_images_dir_input.click(
get_folder_path,
outputs=util_regularization_images_dir_input,
show_progress=False,
)
util_regularization_images_repeat_input = gr.Number(
label='Repeats',
value=1,
interactive=True,
elem_id='number_input',
)
with gr.Row():
util_training_dir_output = gr.Textbox(
label='Destination training directory',
placeholder='Directory where formatted training and regularisation folders will be placed',
interactive=True,
)
button_util_training_dir_output = gr.Button(
'📂', elem_id='open_folder_small'
)
button_util_training_dir_output.click(
get_folder_path, outputs=util_training_dir_output
)
button_prepare_training_data = gr.Button('Prepare training data')
button_prepare_training_data.click(
dreambooth_folder_preparation,
inputs=[
util_training_images_dir_input,
util_training_images_repeat_input,
util_instance_prompt_input,
util_regularization_images_dir_input,
util_regularization_images_repeat_input,
util_class_prompt_input,
util_training_dir_output,
],
show_progress=False,
)
button_copy_info_to_Folders_tab = gr.Button('Copy info to Folders Tab')
button_copy_info_to_Folders_tab.click(
copy_info_to_Folders_tab,
inputs=[util_training_dir_output],
outputs=[
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
logging_dir_input,
],
show_progress=False,
)