7b5639cff5
This is a massive WIP and should not be trusted or used right now. However, major milestones have been crossed. Both message boxes and file dialogs are now properly subprocessed and work on macOS. I think by extension, it may work on runpod environments as well, but that remains to be tested.
178 lines
5.0 KiB
Python
178 lines
5.0 KiB
Python
import os
|
|
import subprocess
|
|
|
|
import gradio as gr
|
|
|
|
from .common_gui import (
|
|
get_file_path, get_saveasfile_path,
|
|
)
|
|
|
|
folder_symbol = '\U0001f4c2' # 📂
|
|
refresh_symbol = '\U0001f504' # 🔄
|
|
save_style_symbol = '\U0001f4be' # 💾
|
|
document_symbol = '\U0001F4C4' # 📄
|
|
PYTHON = 'python3' if os.name == 'posix' else './venv/Scripts/python.exe'
|
|
|
|
|
|
def extract_lora(
|
|
model_tuned,
|
|
model_org,
|
|
save_to,
|
|
save_precision,
|
|
dim,
|
|
v2,
|
|
conv_dim,
|
|
device,
|
|
):
|
|
# Check for caption_text_input
|
|
if model_tuned == '':
|
|
show_message_box('Invalid finetuned model file')
|
|
return
|
|
|
|
if model_org == '':
|
|
show_message_box('Invalid base model file')
|
|
return
|
|
|
|
# Check if source model exist
|
|
if not os.path.isfile(model_tuned):
|
|
show_message_box('The provided finetuned model is not a file')
|
|
return
|
|
|
|
if not os.path.isfile(model_org):
|
|
show_message_box('The provided base model is not a file')
|
|
return
|
|
|
|
run_cmd = (
|
|
f'{PYTHON} "{os.path.join("networks","extract_lora_from_models.py")}"'
|
|
)
|
|
run_cmd += f' --save_precision {save_precision}'
|
|
run_cmd += f' --save_to "{save_to}"'
|
|
run_cmd += f' --model_org "{model_org}"'
|
|
run_cmd += f' --model_tuned "{model_tuned}"'
|
|
run_cmd += f' --dim {dim}'
|
|
run_cmd += f' --device {device}'
|
|
if conv_dim > 0:
|
|
run_cmd += f' --conv_dim {conv_dim}'
|
|
if v2:
|
|
run_cmd += f' --v2'
|
|
|
|
print(run_cmd)
|
|
|
|
# Run the command
|
|
if os.name == 'posix':
|
|
os.system(run_cmd)
|
|
else:
|
|
subprocess.run(run_cmd)
|
|
|
|
|
|
###
|
|
# Gradio UI
|
|
###
|
|
|
|
|
|
def gradio_extract_lora_tab():
|
|
with gr.Tab('Extract LoRA'):
|
|
gr.Markdown(
|
|
'This utility can extract a LoRA network from a finetuned model.'
|
|
)
|
|
lora_ext = gr.Textbox(value='*.safetensors *.pt', visible=False)
|
|
lora_ext_name = gr.Textbox(value='LoRA model types', visible=False)
|
|
model_ext = gr.Textbox(value='*.ckpt *.safetensors', visible=False)
|
|
model_ext_name = gr.Textbox(value='Model types', visible=False)
|
|
|
|
with gr.Row():
|
|
model_tuned = gr.Textbox(
|
|
label='Finetuned model',
|
|
placeholder='Path to the finetuned model to extract',
|
|
interactive=True,
|
|
)
|
|
button_model_tuned_file = gr.Button(
|
|
folder_symbol, elem_id='open_folder_small'
|
|
)
|
|
button_model_tuned_file.click(
|
|
get_file_path,
|
|
inputs=[model_tuned, model_ext, model_ext_name],
|
|
outputs=model_tuned,
|
|
show_progress=False,
|
|
)
|
|
|
|
model_org = gr.Textbox(
|
|
label='Stable Diffusion base model',
|
|
placeholder='Stable Diffusion original model: ckpt or safetensors file',
|
|
interactive=True,
|
|
)
|
|
button_model_org_file = gr.Button(
|
|
folder_symbol, elem_id='open_folder_small'
|
|
)
|
|
button_model_org_file.click(
|
|
get_file_path,
|
|
inputs=[model_org, model_ext, model_ext_name],
|
|
outputs=model_org,
|
|
show_progress=False,
|
|
)
|
|
with gr.Row():
|
|
save_to = gr.Textbox(
|
|
label='Save to',
|
|
placeholder='path where to save the extracted LoRA model...',
|
|
interactive=True,
|
|
)
|
|
button_save_to = gr.Button(
|
|
folder_symbol, elem_id='open_folder_small'
|
|
)
|
|
button_save_to.click(
|
|
get_saveasfile_path,
|
|
inputs=[save_to, lora_ext, lora_ext_name],
|
|
outputs=save_to,
|
|
show_progress=False,
|
|
)
|
|
save_precision = gr.Dropdown(
|
|
label='Save precision',
|
|
choices=['fp16', 'bf16', 'float'],
|
|
value='float',
|
|
interactive=True,
|
|
)
|
|
with gr.Row():
|
|
dim = gr.Slider(
|
|
minimum=4,
|
|
maximum=1024,
|
|
label='Network Dimension',
|
|
value=128,
|
|
step=1,
|
|
interactive=True,
|
|
)
|
|
conv_dim = gr.Slider(
|
|
minimum=0,
|
|
maximum=1024,
|
|
label='Conv Dimension',
|
|
value=0,
|
|
step=1,
|
|
interactive=True,
|
|
)
|
|
v2 = gr.Checkbox(label='v2', value=False, interactive=True)
|
|
device = gr.Dropdown(
|
|
label='Device',
|
|
choices=[
|
|
'cpu',
|
|
'cuda',
|
|
],
|
|
value='cuda',
|
|
interactive=True,
|
|
)
|
|
|
|
extract_button = gr.Button('Extract LoRA model')
|
|
|
|
extract_button.click(
|
|
extract_lora,
|
|
inputs=[
|
|
model_tuned,
|
|
model_org,
|
|
save_to,
|
|
save_precision,
|
|
dim,
|
|
v2,
|
|
conv_dim,
|
|
device
|
|
],
|
|
show_progress=False,
|
|
)
|