KohyaSS/networks/merge_lora.py
2023-03-09 11:06:59 -05:00

219 lines
8.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import math
import argparse
import os
import torch
from safetensors.torch import load_file, save_file
import library.model_util as model_util
import lora
def load_state_dict(file_name, dtype):
if os.path.splitext(file_name)[1] == '.safetensors':
sd = load_file(file_name)
else:
sd = torch.load(file_name, map_location='cpu')
for key in list(sd.keys()):
if type(sd[key]) == torch.Tensor:
sd[key] = sd[key].to(dtype)
return sd
def save_to_file(file_name, model, state_dict, dtype):
if dtype is not None:
for key in list(state_dict.keys()):
if type(state_dict[key]) == torch.Tensor:
state_dict[key] = state_dict[key].to(dtype)
if os.path.splitext(file_name)[1] == '.safetensors':
save_file(model, file_name)
else:
torch.save(model, file_name)
def merge_to_sd_model(text_encoder, unet, models, ratios, merge_dtype):
text_encoder.to(merge_dtype)
unet.to(merge_dtype)
# create module map
name_to_module = {}
for i, root_module in enumerate([text_encoder, unet]):
if i == 0:
prefix = lora.LoRANetwork.LORA_PREFIX_TEXT_ENCODER
target_replace_modules = lora.LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE
else:
prefix = lora.LoRANetwork.LORA_PREFIX_UNET
target_replace_modules = lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
if child_module.__class__.__name__ == "Linear" or child_module.__class__.__name__ == "Conv2d":
lora_name = prefix + '.' + name + '.' + child_name
lora_name = lora_name.replace('.', '_')
name_to_module[lora_name] = child_module
for model, ratio in zip(models, ratios):
print(f"loading: {model}")
lora_sd = load_state_dict(model, merge_dtype)
print(f"merging...")
for key in lora_sd.keys():
if "lora_down" in key:
up_key = key.replace("lora_down", "lora_up")
alpha_key = key[:key.index("lora_down")] + 'alpha'
# find original module for this lora
module_name = '.'.join(key.split('.')[:-2]) # remove trailing ".lora_down.weight"
if module_name not in name_to_module:
print(f"no module found for LoRA weight: {key}")
continue
module = name_to_module[module_name]
# print(f"apply {key} to {module}")
down_weight = lora_sd[key]
up_weight = lora_sd[up_key]
dim = down_weight.size()[0]
alpha = lora_sd.get(alpha_key, dim)
scale = alpha / dim
# W <- W + U * D
weight = module.weight
# print(module_name, down_weight.size(), up_weight.size())
if len(weight.size()) == 2:
# linear
weight = weight + ratio * (up_weight @ down_weight) * scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = weight + ratio * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)
).unsqueeze(2).unsqueeze(3) * scale
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
# print(conved.size(), weight.size(), module.stride, module.padding)
weight = weight + ratio * conved * scale
module.weight = torch.nn.Parameter(weight)
def merge_lora_models(models, ratios, merge_dtype):
base_alphas = {} # alpha for merged model
base_dims = {}
merged_sd = {}
for model, ratio in zip(models, ratios):
print(f"loading: {model}")
lora_sd = load_state_dict(model, merge_dtype)
# get alpha and dim
alphas = {} # alpha for current model
dims = {} # dims for current model
for key in lora_sd.keys():
if 'alpha' in key:
lora_module_name = key[:key.rfind(".alpha")]
alpha = float(lora_sd[key].detach().numpy())
alphas[lora_module_name] = alpha
if lora_module_name not in base_alphas:
base_alphas[lora_module_name] = alpha
elif "lora_down" in key:
lora_module_name = key[:key.rfind(".lora_down")]
dim = lora_sd[key].size()[0]
dims[lora_module_name] = dim
if lora_module_name not in base_dims:
base_dims[lora_module_name] = dim
for lora_module_name in dims.keys():
if lora_module_name not in alphas:
alpha = dims[lora_module_name]
alphas[lora_module_name] = alpha
if lora_module_name not in base_alphas:
base_alphas[lora_module_name] = alpha
print(f"dim: {list(set(dims.values()))}, alpha: {list(set(alphas.values()))}")
# merge
print(f"merging...")
for key in lora_sd.keys():
if 'alpha' in key:
continue
lora_module_name = key[:key.rfind(".lora_")]
base_alpha = base_alphas[lora_module_name]
alpha = alphas[lora_module_name]
scale = math.sqrt(alpha / base_alpha) * ratio
if key in merged_sd:
assert merged_sd[key].size() == lora_sd[key].size(
), f"weights shape mismatch merging v1 and v2, different dims? / 重みのサイズが合いません。v1とv2、または次元数の異なるモデルはマージできません"
merged_sd[key] = merged_sd[key] + lora_sd[key] * scale
else:
merged_sd[key] = lora_sd[key] * scale
# set alpha to sd
for lora_module_name, alpha in base_alphas.items():
key = lora_module_name + ".alpha"
merged_sd[key] = torch.tensor(alpha)
print("merged model")
print(f"dim: {list(set(base_dims.values()))}, alpha: {list(set(base_alphas.values()))}")
return merged_sd
def merge(args):
assert len(args.models) == len(args.ratios), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください"
def str_to_dtype(p):
if p == 'float':
return torch.float
if p == 'fp16':
return torch.float16
if p == 'bf16':
return torch.bfloat16
return None
merge_dtype = str_to_dtype(args.precision)
save_dtype = str_to_dtype(args.save_precision)
if save_dtype is None:
save_dtype = merge_dtype
if args.sd_model is not None:
print(f"loading SD model: {args.sd_model}")
text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.sd_model)
merge_to_sd_model(text_encoder, unet, args.models, args.ratios, merge_dtype)
print(f"saving SD model to: {args.save_to}")
model_util.save_stable_diffusion_checkpoint(args.v2, args.save_to, text_encoder, unet,
args.sd_model, 0, 0, save_dtype, vae)
else:
state_dict = merge_lora_models(args.models, args.ratios, merge_dtype)
print(f"saving model to: {args.save_to}")
save_to_file(args.save_to, state_dict, state_dict, save_dtype)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--v2", action='store_true',
help='load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む')
parser.add_argument("--save_precision", type=str, default=None,
choices=[None, "float", "fp16", "bf16"], help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ")
parser.add_argument("--precision", type=str, default="float",
choices=["float", "fp16", "bf16"], help="precision in merging (float is recommended) / マージの計算時の精度floatを推奨")
parser.add_argument("--sd_model", type=str, default=None,
help="Stable Diffusion model to load: ckpt or safetensors file, merge LoRA models if omitted / 読み込むモデル、ckptまたはsafetensors。省略時はLoRAモデル同士をマージする")
parser.add_argument("--save_to", type=str, default=None,
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors")
parser.add_argument("--models", type=str, nargs='*',
help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors")
parser.add_argument("--ratios", type=float, nargs='*',
help="ratios for each model / それぞれのLoRAモデルの比率")
args = parser.parse_args()
merge(args)