KohyaSS/library/common_gui.py
2023-03-03 07:11:15 -05:00

779 lines
26 KiB
Python

from tkinter import filedialog, Tk
import os
import gradio as gr
from easygui import msgbox
import shutil
folder_symbol = '\U0001f4c2' # 📂
refresh_symbol = '\U0001f504' # 🔄
save_style_symbol = '\U0001f4be' # 💾
document_symbol = '\U0001F4C4' # 📄
def update_optimizer(my_data):
if my_data.get('use_8bit_adam', False):
my_data['optimizer'] = 'AdamW8bit'
my_data['use_8bit_adam'] = False
return my_data
def get_dir_and_file(file_path):
dir_path, file_name = os.path.split(file_path)
return (dir_path, file_name)
def has_ext_files(directory, extension):
# Iterate through all the files in the directory
for file in os.listdir(directory):
# If the file name ends with extension, return True
if file.endswith(extension):
return True
# If no extension files were found, return False
return False
def get_file_path(
file_path='', defaultextension='.json', extension_name='Config files'
):
current_file_path = file_path
# print(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
file_path = filedialog.askopenfilename(
filetypes=(
(f'{extension_name}', f'{defaultextension}'),
('All files', '*'),
),
defaultextension=defaultextension,
initialfile=initial_file,
initialdir=initial_dir,
)
root.destroy()
if file_path == '':
file_path = current_file_path
return file_path
def get_any_file_path(file_path=''):
current_file_path = file_path
# print(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
file_path = filedialog.askopenfilename(
initialdir=initial_dir,
initialfile=initial_file,
)
root.destroy()
if file_path == '':
file_path = current_file_path
return file_path
def remove_doublequote(file_path):
if file_path != None:
file_path = file_path.replace('"', '')
return file_path
def set_legacy_8bitadam(optimizer, use_8bit_adam):
if optimizer == 'AdamW8bit':
# use_8bit_adam = True
return gr.Dropdown.update(value=optimizer), gr.Checkbox.update(
value=True, interactive=False, visible=True
)
else:
# use_8bit_adam = False
return gr.Dropdown.update(value=optimizer), gr.Checkbox.update(
value=False, interactive=False, visible=True
)
def get_folder_path(folder_path=''):
current_folder_path = folder_path
initial_dir, initial_file = get_dir_and_file(folder_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
folder_path = filedialog.askdirectory(initialdir=initial_dir)
root.destroy()
if folder_path == '':
folder_path = current_folder_path
return folder_path
def get_saveasfile_path(
file_path='', defaultextension='.json', extension_name='Config files'
):
current_file_path = file_path
# print(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
save_file_path = filedialog.asksaveasfile(
filetypes=(
(f'{extension_name}', f'{defaultextension}'),
('All files', '*'),
),
defaultextension=defaultextension,
initialdir=initial_dir,
initialfile=initial_file,
)
root.destroy()
# print(save_file_path)
if save_file_path == None:
file_path = current_file_path
else:
print(save_file_path.name)
file_path = save_file_path.name
# print(file_path)
return file_path
def get_saveasfilename_path(
file_path='', extensions='*', extension_name='Config files'
):
current_file_path = file_path
# print(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
save_file_path = filedialog.asksaveasfilename(
filetypes=((f'{extension_name}', f'{extensions}'), ('All files', '*')),
defaultextension=extensions,
initialdir=initial_dir,
initialfile=initial_file,
)
root.destroy()
if save_file_path == '':
file_path = current_file_path
else:
# print(save_file_path)
file_path = save_file_path
return file_path
def add_pre_postfix(
folder='', prefix='', postfix='', caption_file_ext='.caption'
):
if not has_ext_files(folder, caption_file_ext):
msgbox(
f'No files with extension {caption_file_ext} were found in {folder}...'
)
return
if prefix == '' and postfix == '':
return
files = [f for f in os.listdir(folder) if f.endswith(caption_file_ext)]
if not prefix == '':
prefix = f'{prefix} '
if not postfix == '':
postfix = f' {postfix}'
for file in files:
with open(os.path.join(folder, file), 'r+') as f:
content = f.read()
content = content.rstrip()
f.seek(0, 0)
f.write(f'{prefix}{content}{postfix}')
f.close()
def find_replace(folder='', caption_file_ext='.caption', find='', replace=''):
print('Running caption find/replace')
if not has_ext_files(folder, caption_file_ext):
msgbox(
f'No files with extension {caption_file_ext} were found in {folder}...'
)
return
if find == '':
return
files = [f for f in os.listdir(folder) if f.endswith(caption_file_ext)]
for file in files:
with open(os.path.join(folder, file), 'r', errors='ignore') as f:
content = f.read()
f.close
content = content.replace(find, replace)
with open(os.path.join(folder, file), 'w') as f:
f.write(content)
f.close()
def color_aug_changed(color_aug):
if color_aug:
msgbox(
'Disabling "Cache latent" because "Color augmentation" has been selected...'
)
return gr.Checkbox.update(value=False, interactive=False)
else:
return gr.Checkbox.update(value=True, interactive=True)
def save_inference_file(output_dir, v2, v_parameterization, output_name):
# List all files in the directory
files = os.listdir(output_dir)
# Iterate over the list of files
for file in files:
# Check if the file starts with the value of output_name
if file.startswith(output_name):
# Check if it is a file or a directory
if os.path.isfile(os.path.join(output_dir, file)):
# Split the file name and extension
file_name, ext = os.path.splitext(file)
# Copy the v2-inference-v.yaml file to the current file, with a .yaml extension
if v2 and v_parameterization:
print(
f'Saving v2-inference-v.yaml as {output_dir}/{file_name}.yaml'
)
shutil.copy(
f'./v2_inference/v2-inference-v.yaml',
f'{output_dir}/{file_name}.yaml',
)
elif v2:
print(
f'Saving v2-inference.yaml as {output_dir}/{file_name}.yaml'
)
shutil.copy(
f'./v2_inference/v2-inference.yaml',
f'{output_dir}/{file_name}.yaml',
)
def set_pretrained_model_name_or_path_input(value, pretrained_model_name_or_path, v2, v_parameterization):
# define a list of substrings to search for
substrings_v2 = [
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
if str(value) in substrings_v2:
print('SD v2 model detected. Setting --v2 parameter')
v2 = True
v_parameterization = False
return value, v2, v_parameterization
# define a list of substrings to search for v-objective
substrings_v_parameterization = [
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
if str(value) in substrings_v_parameterization:
print(
'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization'
)
v2 = True
v_parameterization = True
return value, v2, v_parameterization
# define a list of substrings to v1.x
substrings_v1_model = [
'CompVis/stable-diffusion-v1-4',
'runwayml/stable-diffusion-v1-5',
]
if str(value) in substrings_v1_model:
v2 = False
v_parameterization = False
return value, v2, v_parameterization
if value == 'custom':
if str(pretrained_model_name_or_path) in substrings_v1_model or str(pretrained_model_name_or_path) in substrings_v2 or str(pretrained_model_name_or_path) in substrings_v_parameterization:
value = ''
v2 = False
v_parameterization = False
return value, v2, v_parameterization
###
### Gradio common GUI section
###
def gradio_config():
with gr.Accordion('Configuration file', open=False):
with gr.Row():
button_open_config = gr.Button('Open 📂', elem_id='open_folder')
button_save_config = gr.Button('Save 💾', elem_id='open_folder')
button_save_as_config = gr.Button(
'Save as... 💾', elem_id='open_folder'
)
config_file_name = gr.Textbox(
label='',
placeholder="type the configuration file path or use the 'Open' button above to select it...",
interactive=True,
)
return (
button_open_config,
button_save_config,
button_save_as_config,
config_file_name,
)
def gradio_source_model():
with gr.Tab('Source model'):
# Define the input elements
with gr.Row():
pretrained_model_name_or_path = gr.Textbox(
label='Pretrained model name or path',
placeholder='enter the path to custom model or name of pretrained model',
value='runwayml/stable-diffusion-v1-5'
)
pretrained_model_name_or_path_file = gr.Button(
document_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_file.click(
get_any_file_path,
inputs=pretrained_model_name_or_path,
outputs=pretrained_model_name_or_path,
)
pretrained_model_name_or_path_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_folder.click(
get_folder_path,
inputs=pretrained_model_name_or_path,
outputs=pretrained_model_name_or_path,
)
model_list = gr.Dropdown(
label='Model Quick Pick',
choices=[
'custom',
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
'runwayml/stable-diffusion-v1-5',
'CompVis/stable-diffusion-v1-4',
],
value='runwayml/stable-diffusion-v1-5'
)
save_model_as = gr.Dropdown(
label='Save trained model as',
choices=[
'same as source model',
'ckpt',
'diffusers',
'diffusers_safetensors',
'safetensors',
],
value='safetensors',
)
with gr.Row():
v2 = gr.Checkbox(label='v2', value=False)
v_parameterization = gr.Checkbox(
label='v_parameterization', value=False
)
model_list.change(
set_pretrained_model_name_or_path_input,
inputs=[model_list, pretrained_model_name_or_path, v2, v_parameterization],
outputs=[
pretrained_model_name_or_path,
v2,
v_parameterization,
],
)
return (
pretrained_model_name_or_path,
v2,
v_parameterization,
save_model_as,
model_list,
)
def gradio_training(
learning_rate_value='1e-6',
lr_scheduler_value='constant',
lr_warmup_value='0',
):
with gr.Row():
train_batch_size = gr.Slider(
minimum=1,
maximum=64,
label='Train batch size',
value=1,
step=1,
)
epoch = gr.Textbox(label='Epoch', value=1)
save_every_n_epochs = gr.Textbox(label='Save every N epochs', value=1)
caption_extension = gr.Textbox(
label='Caption Extension',
placeholder='(Optional) Extension for caption files. default: .caption',
)
with gr.Row():
mixed_precision = gr.Dropdown(
label='Mixed precision',
choices=[
'no',
'fp16',
'bf16',
],
value='fp16',
)
save_precision = gr.Dropdown(
label='Save precision',
choices=[
'float',
'fp16',
'bf16',
],
value='fp16',
)
num_cpu_threads_per_process = gr.Slider(
minimum=1,
maximum=os.cpu_count(),
step=1,
label='Number of CPU threads per core',
value=2,
)
seed = gr.Textbox(label='Seed', placeholder='(Optional) eg:1234')
cache_latents = gr.Checkbox(label='Cache latent', value=True)
with gr.Row():
learning_rate = gr.Textbox(
label='Learning rate', value=learning_rate_value
)
lr_scheduler = gr.Dropdown(
label='LR Scheduler',
choices=[
'adafactor',
'constant',
'constant_with_warmup',
'cosine',
'cosine_with_restarts',
'linear',
'polynomial',
],
value=lr_scheduler_value,
)
lr_warmup = gr.Textbox(
label='LR warmup (% of steps)', value=lr_warmup_value
)
optimizer = gr.Dropdown(
label='Optimizer',
choices=[
'AdamW',
'AdamW8bit',
'Adafactor',
'DAdaptation',
'Lion',
'SGDNesterov',
'SGDNesterov8bit',
],
value='AdamW8bit',
interactive=True,
)
with gr.Row():
optimizer_args = gr.Textbox(
label='Optimizer extra arguments',
placeholder='(Optional) eg: relative_step=True scale_parameter=True warmup_init=True',
)
return (
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
num_cpu_threads_per_process,
seed,
caption_extension,
cache_latents,
optimizer,
optimizer_args,
)
def run_cmd_training(**kwargs):
options = [
f' --learning_rate="{kwargs.get("learning_rate", "")}"'
if kwargs.get('learning_rate')
else '',
f' --lr_scheduler="{kwargs.get("lr_scheduler", "")}"'
if kwargs.get('lr_scheduler')
else '',
f' --lr_warmup_steps="{kwargs.get("lr_warmup_steps", "")}"'
if kwargs.get('lr_warmup_steps')
else '',
f' --train_batch_size="{kwargs.get("train_batch_size", "")}"'
if kwargs.get('train_batch_size')
else '',
f' --max_train_steps="{kwargs.get("max_train_steps", "")}"'
if kwargs.get('max_train_steps')
else '',
f' --save_every_n_epochs="{kwargs.get("save_every_n_epochs", "")}"'
if kwargs.get('save_every_n_epochs')
else '',
f' --mixed_precision="{kwargs.get("mixed_precision", "")}"'
if kwargs.get('mixed_precision')
else '',
f' --save_precision="{kwargs.get("save_precision", "")}"'
if kwargs.get('save_precision')
else '',
f' --seed="{kwargs.get("seed", "")}"' if kwargs.get('seed') else '',
f' --caption_extension="{kwargs.get("caption_extension", "")}"'
if kwargs.get('caption_extension')
else '',
' --cache_latents' if kwargs.get('cache_latents') else '',
# ' --use_lion_optimizer' if kwargs.get('optimizer') == 'Lion' else '',
f' --optimizer_type="{kwargs.get("optimizer", "AdamW")}"',
f' --optimizer_args {kwargs.get("optimizer_args", "")}'
if not kwargs.get('optimizer_args') == ''
else '',
]
run_cmd = ''.join(options)
return run_cmd
# # This function takes a dictionary of keyword arguments and returns a string that can be used to run a command-line training script
# def run_cmd_training(**kwargs):
# arg_map = {
# 'learning_rate': ' --learning_rate="{}"',
# 'lr_scheduler': ' --lr_scheduler="{}"',
# 'lr_warmup_steps': ' --lr_warmup_steps="{}"',
# 'train_batch_size': ' --train_batch_size="{}"',
# 'max_train_steps': ' --max_train_steps="{}"',
# 'save_every_n_epochs': ' --save_every_n_epochs="{}"',
# 'mixed_precision': ' --mixed_precision="{}"',
# 'save_precision': ' --save_precision="{}"',
# 'seed': ' --seed="{}"',
# 'caption_extension': ' --caption_extension="{}"',
# 'cache_latents': ' --cache_latents',
# 'optimizer': ' --use_lion_optimizer' if kwargs.get('optimizer') == 'Lion' else '',
# }
# options = [arg_map[key].format(value) for key, value in kwargs.items() if key in arg_map and value]
# cmd = ''.join(options)
# return cmd
def gradio_advanced_training():
with gr.Row():
keep_tokens = gr.Slider(
label='Keep n tokens', value='0', minimum=0, maximum=32, step=1
)
clip_skip = gr.Slider(
label='Clip skip', value='1', minimum=1, maximum=12, step=1
)
max_token_length = gr.Dropdown(
label='Max Token Length',
choices=[
'75',
'150',
'225',
],
value='75',
)
full_fp16 = gr.Checkbox(
label='Full fp16 training (experimental)', value=False
)
with gr.Row():
gradient_checkpointing = gr.Checkbox(
label='Gradient checkpointing', value=False
)
shuffle_caption = gr.Checkbox(label='Shuffle caption', value=False)
persistent_data_loader_workers = gr.Checkbox(
label='Persistent data loader', value=False
)
mem_eff_attn = gr.Checkbox(
label='Memory efficient attention', value=False
)
with gr.Row():
# This use_8bit_adam element should be removed in a future release as it is no longer used
use_8bit_adam = gr.Checkbox(
label='Use 8bit adam', value=False, visible=False
)
xformers = gr.Checkbox(label='Use xformers', value=True)
color_aug = gr.Checkbox(label='Color augmentation', value=False)
flip_aug = gr.Checkbox(label='Flip augmentation', value=False)
with gr.Row():
bucket_no_upscale = gr.Checkbox(
label="Don't upscale bucket resolution", value=True
)
bucket_reso_steps = gr.Number(
label='Bucket resolution steps', value=64
)
random_crop = gr.Checkbox(
label='Random crop instead of center crop', value=False
)
noise_offset = gr.Textbox(
label='Noise offset (0 - 1)', placeholder='(Oprional) eg: 0.1'
)
with gr.Row():
caption_dropout_every_n_epochs = gr.Number(
label='Dropout caption every n epochs', value=0
)
caption_dropout_rate = gr.Slider(
label='Rate of caption dropout', value=0, minimum=0, maximum=1
)
with gr.Row():
save_state = gr.Checkbox(label='Save training state', value=False)
resume = gr.Textbox(
label='Resume from saved training state',
placeholder='path to "last-state" state folder to resume from',
)
resume_button = gr.Button('📂', elem_id='open_folder_small')
resume_button.click(get_folder_path, outputs=resume)
max_train_epochs = gr.Textbox(
label='Max train epoch',
placeholder='(Optional) Override number of epoch',
)
max_data_loader_n_workers = gr.Textbox(
label='Max num workers for DataLoader',
placeholder='(Optional) Override number of epoch. Default: 8',
)
return (
use_8bit_adam,
xformers,
full_fp16,
gradient_checkpointing,
shuffle_caption,
color_aug,
flip_aug,
clip_skip,
mem_eff_attn,
save_state,
resume,
max_token_length,
max_train_epochs,
max_data_loader_n_workers,
keep_tokens,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
caption_dropout_every_n_epochs,
caption_dropout_rate,
noise_offset,
)
def run_cmd_advanced_training(**kwargs):
options = [
f' --max_train_epochs="{kwargs.get("max_train_epochs", "")}"'
if kwargs.get('max_train_epochs')
else '',
f' --max_data_loader_n_workers="{kwargs.get("max_data_loader_n_workers", "")}"'
if kwargs.get('max_data_loader_n_workers')
else '',
f' --max_token_length={kwargs.get("max_token_length", "")}'
if int(kwargs.get('max_token_length', 75)) > 75
else '',
f' --clip_skip={kwargs.get("clip_skip", "")}'
if int(kwargs.get('clip_skip', 1)) > 1
else '',
f' --resume="{kwargs.get("resume", "")}"'
if kwargs.get('resume')
else '',
f' --keep_tokens="{kwargs.get("keep_tokens", "")}"'
if int(kwargs.get('keep_tokens', 0)) > 0
else '',
f' --caption_dropout_every_n_epochs="{kwargs.get("caption_dropout_every_n_epochs", "")}"'
if int(kwargs.get('caption_dropout_every_n_epochs', 0)) > 0
else '',
f' --caption_dropout_rate="{kwargs.get("caption_dropout_rate", "")}"'
if float(kwargs.get('caption_dropout_rate', 0)) > 0
else '',
f' --bucket_reso_steps={int(kwargs.get("bucket_reso_steps", 1))}'
if int(kwargs.get('bucket_reso_steps', 64)) >= 1
else '',
' --save_state' if kwargs.get('save_state') else '',
' --mem_eff_attn' if kwargs.get('mem_eff_attn') else '',
' --color_aug' if kwargs.get('color_aug') else '',
' --flip_aug' if kwargs.get('flip_aug') else '',
' --shuffle_caption' if kwargs.get('shuffle_caption') else '',
' --gradient_checkpointing'
if kwargs.get('gradient_checkpointing')
else '',
' --full_fp16' if kwargs.get('full_fp16') else '',
' --xformers' if kwargs.get('xformers') else '',
' --use_8bit_adam' if kwargs.get('use_8bit_adam') else '',
' --persistent_data_loader_workers'
if kwargs.get('persistent_data_loader_workers')
else '',
' --bucket_no_upscale' if kwargs.get('bucket_no_upscale') else '',
' --random_crop' if kwargs.get('random_crop') else '',
f' --noise_offset={float(kwargs.get("noise_offset", 0))}'
if not kwargs.get('noise_offset', '') == ''
else '',
]
run_cmd = ''.join(options)
return run_cmd
# def run_cmd_advanced_training(**kwargs):
# arg_map = {
# 'max_train_epochs': ' --max_train_epochs="{}"',
# 'max_data_loader_n_workers': ' --max_data_loader_n_workers="{}"',
# 'max_token_length': ' --max_token_length={}' if int(kwargs.get('max_token_length', 75)) > 75 else '',
# 'clip_skip': ' --clip_skip={}' if int(kwargs.get('clip_skip', 1)) > 1 else '',
# 'resume': ' --resume="{}"',
# 'keep_tokens': ' --keep_tokens="{}"' if int(kwargs.get('keep_tokens', 0)) > 0 else '',
# 'caption_dropout_every_n_epochs': ' --caption_dropout_every_n_epochs="{}"' if int(kwargs.get('caption_dropout_every_n_epochs', 0)) > 0 else '',
# 'caption_dropout_rate': ' --caption_dropout_rate="{}"' if float(kwargs.get('caption_dropout_rate', 0)) > 0 else '',
# 'bucket_reso_steps': ' --bucket_reso_steps={:d}' if int(kwargs.get('bucket_reso_steps', 64)) >= 1 else '',
# 'save_state': ' --save_state',
# 'mem_eff_attn': ' --mem_eff_attn',
# 'color_aug': ' --color_aug',
# 'flip_aug': ' --flip_aug',
# 'shuffle_caption': ' --shuffle_caption',
# 'gradient_checkpointing': ' --gradient_checkpointing',
# 'full_fp16': ' --full_fp16',
# 'xformers': ' --xformers',
# 'use_8bit_adam': ' --use_8bit_adam',
# 'persistent_data_loader_workers': ' --persistent_data_loader_workers',
# 'bucket_no_upscale': ' --bucket_no_upscale',
# 'random_crop': ' --random_crop',
# }
# options = [arg_map[key].format(value) for key, value in kwargs.items() if key in arg_map and value]
# cmd = ''.join(options)
# return cmd