dc5afbb057
Add model name support
472 lines
16 KiB
Python
472 lines
16 KiB
Python
# training with captions
|
||
# XXX dropped option: hypernetwork training
|
||
|
||
import argparse
|
||
import gc
|
||
import math
|
||
import os
|
||
|
||
from tqdm import tqdm
|
||
import torch
|
||
from accelerate.utils import set_seed
|
||
import diffusers
|
||
from diffusers import DDPMScheduler
|
||
|
||
import library.train_util as train_util
|
||
|
||
|
||
def collate_fn(examples):
|
||
return examples[0]
|
||
|
||
|
||
def train(args):
|
||
train_util.verify_training_args(args)
|
||
train_util.prepare_dataset_args(args, True)
|
||
|
||
cache_latents = args.cache_latents
|
||
|
||
if args.seed is not None:
|
||
set_seed(args.seed) # 乱数系列を初期化する
|
||
|
||
tokenizer = train_util.load_tokenizer(args)
|
||
|
||
train_dataset = train_util.FineTuningDataset(
|
||
args.in_json,
|
||
args.train_batch_size,
|
||
args.train_data_dir,
|
||
tokenizer,
|
||
args.max_token_length,
|
||
args.shuffle_caption,
|
||
args.keep_tokens,
|
||
args.resolution,
|
||
args.enable_bucket,
|
||
args.min_bucket_reso,
|
||
args.max_bucket_reso,
|
||
args.flip_aug,
|
||
args.color_aug,
|
||
args.face_crop_aug_range,
|
||
args.random_crop,
|
||
args.dataset_repeats,
|
||
args.debug_dataset,
|
||
)
|
||
train_dataset.make_buckets()
|
||
|
||
if args.debug_dataset:
|
||
train_util.debug_dataset(train_dataset)
|
||
return
|
||
if len(train_dataset) == 0:
|
||
print(
|
||
'No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。'
|
||
)
|
||
return
|
||
|
||
# acceleratorを準備する
|
||
print('prepare accelerator')
|
||
accelerator, unwrap_model = train_util.prepare_accelerator(args)
|
||
|
||
# mixed precisionに対応した型を用意しておき適宜castする
|
||
weight_dtype, save_dtype = train_util.prepare_dtype(args)
|
||
|
||
# モデルを読み込む
|
||
(
|
||
text_encoder,
|
||
vae,
|
||
unet,
|
||
load_stable_diffusion_format,
|
||
) = train_util.load_target_model(args, weight_dtype)
|
||
|
||
# verify load/save model formats
|
||
if load_stable_diffusion_format:
|
||
src_stable_diffusion_ckpt = args.pretrained_model_name_or_path
|
||
src_diffusers_model_path = None
|
||
else:
|
||
src_stable_diffusion_ckpt = None
|
||
src_diffusers_model_path = args.pretrained_model_name_or_path
|
||
|
||
if args.save_model_as is None:
|
||
save_stable_diffusion_format = load_stable_diffusion_format
|
||
use_safetensors = args.use_safetensors
|
||
else:
|
||
save_stable_diffusion_format = (
|
||
args.save_model_as.lower() == 'ckpt'
|
||
or args.save_model_as.lower() == 'safetensors'
|
||
)
|
||
use_safetensors = args.use_safetensors or (
|
||
'safetensors' in args.save_model_as.lower()
|
||
)
|
||
|
||
# Diffusers版のxformers使用フラグを設定する関数
|
||
def set_diffusers_xformers_flag(model, valid):
|
||
# model.set_use_memory_efficient_attention_xformers(valid) # 次のリリースでなくなりそう
|
||
# pipeが自動で再帰的にset_use_memory_efficient_attention_xformersを探すんだって(;´Д`)
|
||
# U-Netだけ使う時にはどうすればいいのか……仕方ないからコピって使うか
|
||
# 0.10.2でなんか巻き戻って個別に指定するようになった(;^ω^)
|
||
|
||
# Recursively walk through all the children.
|
||
# Any children which exposes the set_use_memory_efficient_attention_xformers method
|
||
# gets the message
|
||
def fn_recursive_set_mem_eff(module: torch.nn.Module):
|
||
if hasattr(module, 'set_use_memory_efficient_attention_xformers'):
|
||
module.set_use_memory_efficient_attention_xformers(valid)
|
||
|
||
for child in module.children():
|
||
fn_recursive_set_mem_eff(child)
|
||
|
||
fn_recursive_set_mem_eff(model)
|
||
|
||
# モデルに xformers とか memory efficient attention を組み込む
|
||
if args.diffusers_xformers:
|
||
print('Use xformers by Diffusers')
|
||
set_diffusers_xformers_flag(unet, True)
|
||
else:
|
||
# Windows版のxformersはfloatで学習できないのでxformersを使わない設定も可能にしておく必要がある
|
||
print("Disable Diffusers' xformers")
|
||
set_diffusers_xformers_flag(unet, False)
|
||
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
|
||
|
||
# 学習を準備する
|
||
if cache_latents:
|
||
vae.to(accelerator.device, dtype=weight_dtype)
|
||
vae.requires_grad_(False)
|
||
vae.eval()
|
||
with torch.no_grad():
|
||
train_dataset.cache_latents(vae)
|
||
vae.to('cpu')
|
||
if torch.cuda.is_available():
|
||
torch.cuda.empty_cache()
|
||
gc.collect()
|
||
|
||
# 学習を準備する:モデルを適切な状態にする
|
||
training_models = []
|
||
if args.gradient_checkpointing:
|
||
unet.enable_gradient_checkpointing()
|
||
training_models.append(unet)
|
||
|
||
if args.train_text_encoder:
|
||
print('enable text encoder training')
|
||
if args.gradient_checkpointing:
|
||
text_encoder.gradient_checkpointing_enable()
|
||
training_models.append(text_encoder)
|
||
else:
|
||
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
||
text_encoder.requires_grad_(False) # text encoderは学習しない
|
||
if args.gradient_checkpointing:
|
||
text_encoder.gradient_checkpointing_enable()
|
||
text_encoder.train() # required for gradient_checkpointing
|
||
else:
|
||
text_encoder.eval()
|
||
|
||
if not cache_latents:
|
||
vae.requires_grad_(False)
|
||
vae.eval()
|
||
vae.to(accelerator.device, dtype=weight_dtype)
|
||
|
||
for m in training_models:
|
||
m.requires_grad_(True)
|
||
params = []
|
||
for m in training_models:
|
||
params.extend(m.parameters())
|
||
params_to_optimize = params
|
||
|
||
# 学習に必要なクラスを準備する
|
||
print('prepare optimizer, data loader etc.')
|
||
|
||
# 8-bit Adamを使う
|
||
if args.use_8bit_adam:
|
||
try:
|
||
import bitsandbytes as bnb
|
||
except ImportError:
|
||
raise ImportError(
|
||
'No bitsand bytes / bitsandbytesがインストールされていないようです'
|
||
)
|
||
print('use 8-bit Adam optimizer')
|
||
optimizer_class = bnb.optim.AdamW8bit
|
||
else:
|
||
optimizer_class = torch.optim.AdamW
|
||
|
||
# betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略
|
||
optimizer = optimizer_class(params_to_optimize, lr=args.learning_rate)
|
||
|
||
# dataloaderを準備する
|
||
# DataLoaderのプロセス数:0はメインプロセスになる
|
||
n_workers = min(8, os.cpu_count() - 1) # cpu_count-1 ただし最大8
|
||
train_dataloader = torch.utils.data.DataLoader(
|
||
train_dataset,
|
||
batch_size=1,
|
||
shuffle=False,
|
||
collate_fn=collate_fn,
|
||
num_workers=n_workers,
|
||
)
|
||
|
||
# lr schedulerを用意する
|
||
lr_scheduler = diffusers.optimization.get_scheduler(
|
||
args.lr_scheduler,
|
||
optimizer,
|
||
num_warmup_steps=args.lr_warmup_steps,
|
||
num_training_steps=args.max_train_steps
|
||
* args.gradient_accumulation_steps,
|
||
)
|
||
|
||
# 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする
|
||
if args.full_fp16:
|
||
assert (
|
||
args.mixed_precision == 'fp16'
|
||
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
|
||
print('enable full fp16 training.')
|
||
unet.to(weight_dtype)
|
||
text_encoder.to(weight_dtype)
|
||
|
||
# acceleratorがなんかよろしくやってくれるらしい
|
||
if args.train_text_encoder:
|
||
(
|
||
unet,
|
||
text_encoder,
|
||
optimizer,
|
||
train_dataloader,
|
||
lr_scheduler,
|
||
) = accelerator.prepare(
|
||
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
|
||
)
|
||
else:
|
||
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||
unet, optimizer, train_dataloader, lr_scheduler
|
||
)
|
||
|
||
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
|
||
if args.full_fp16:
|
||
train_util.patch_accelerator_for_fp16_training(accelerator)
|
||
|
||
# resumeする
|
||
if args.resume is not None:
|
||
print(f'resume training from state: {args.resume}')
|
||
accelerator.load_state(args.resume)
|
||
|
||
# epoch数を計算する
|
||
num_update_steps_per_epoch = math.ceil(
|
||
len(train_dataloader) / args.gradient_accumulation_steps
|
||
)
|
||
num_train_epochs = math.ceil(
|
||
args.max_train_steps / num_update_steps_per_epoch
|
||
)
|
||
|
||
# 学習する
|
||
total_batch_size = (
|
||
args.train_batch_size
|
||
* accelerator.num_processes
|
||
* args.gradient_accumulation_steps
|
||
)
|
||
print('running training / 学習開始')
|
||
print(f' num examples / サンプル数: {train_dataset.num_train_images}')
|
||
print(f' num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}')
|
||
print(f' num epochs / epoch数: {num_train_epochs}')
|
||
print(f' batch size per device / バッチサイズ: {args.train_batch_size}')
|
||
print(
|
||
f' total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}'
|
||
)
|
||
print(
|
||
f' gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}'
|
||
)
|
||
print(f' total optimization steps / 学習ステップ数: {args.max_train_steps}')
|
||
|
||
progress_bar = tqdm(
|
||
range(args.max_train_steps),
|
||
smoothing=0,
|
||
disable=not accelerator.is_local_main_process,
|
||
desc='steps',
|
||
)
|
||
global_step = 0
|
||
|
||
noise_scheduler = DDPMScheduler(
|
||
beta_start=0.00085,
|
||
beta_end=0.012,
|
||
beta_schedule='scaled_linear',
|
||
num_train_timesteps=1000,
|
||
clip_sample=False,
|
||
)
|
||
|
||
if accelerator.is_main_process:
|
||
accelerator.init_trackers('finetuning')
|
||
|
||
for epoch in range(num_train_epochs):
|
||
print(f'epoch {epoch+1}/{num_train_epochs}')
|
||
for m in training_models:
|
||
m.train()
|
||
|
||
loss_total = 0
|
||
for step, batch in enumerate(train_dataloader):
|
||
with accelerator.accumulate(
|
||
training_models[0]
|
||
): # 複数モデルに対応していない模様だがとりあえずこうしておく
|
||
with torch.no_grad():
|
||
if 'latents' in batch and batch['latents'] is not None:
|
||
latents = batch['latents'].to(accelerator.device)
|
||
else:
|
||
# latentに変換
|
||
latents = vae.encode(
|
||
batch['images'].to(dtype=weight_dtype)
|
||
).latent_dist.sample()
|
||
latents = latents * 0.18215
|
||
b_size = latents.shape[0]
|
||
|
||
with torch.set_grad_enabled(args.train_text_encoder):
|
||
# Get the text embedding for conditioning
|
||
input_ids = batch['input_ids'].to(accelerator.device)
|
||
encoder_hidden_states = train_util.get_hidden_states(
|
||
args,
|
||
input_ids,
|
||
tokenizer,
|
||
text_encoder,
|
||
None if not args.full_fp16 else weight_dtype,
|
||
)
|
||
|
||
# Sample noise that we'll add to the latents
|
||
noise = torch.randn_like(latents, device=latents.device)
|
||
|
||
# Sample a random timestep for each image
|
||
timesteps = torch.randint(
|
||
0,
|
||
noise_scheduler.config.num_train_timesteps,
|
||
(b_size,),
|
||
device=latents.device,
|
||
)
|
||
timesteps = timesteps.long()
|
||
|
||
# Add noise to the latents according to the noise magnitude at each timestep
|
||
# (this is the forward diffusion process)
|
||
noisy_latents = noise_scheduler.add_noise(
|
||
latents, noise, timesteps
|
||
)
|
||
|
||
# Predict the noise residual
|
||
noise_pred = unet(
|
||
noisy_latents, timesteps, encoder_hidden_states
|
||
).sample
|
||
|
||
if args.v_parameterization:
|
||
# v-parameterization training
|
||
target = noise_scheduler.get_velocity(
|
||
latents, noise, timesteps
|
||
)
|
||
else:
|
||
target = noise
|
||
|
||
loss = torch.nn.functional.mse_loss(
|
||
noise_pred.float(), target.float(), reduction='mean'
|
||
)
|
||
|
||
accelerator.backward(loss)
|
||
if accelerator.sync_gradients:
|
||
params_to_clip = []
|
||
for m in training_models:
|
||
params_to_clip.extend(m.parameters())
|
||
accelerator.clip_grad_norm_(
|
||
params_to_clip, 1.0
|
||
) # args.max_grad_norm)
|
||
|
||
optimizer.step()
|
||
lr_scheduler.step()
|
||
optimizer.zero_grad(set_to_none=True)
|
||
|
||
# Checks if the accelerator has performed an optimization step behind the scenes
|
||
if accelerator.sync_gradients:
|
||
progress_bar.update(1)
|
||
global_step += 1
|
||
|
||
current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず
|
||
if args.logging_dir is not None:
|
||
logs = {
|
||
'loss': current_loss,
|
||
'lr': lr_scheduler.get_last_lr()[0],
|
||
}
|
||
accelerator.log(logs, step=global_step)
|
||
|
||
loss_total += current_loss
|
||
avr_loss = loss_total / (step + 1)
|
||
logs = {'loss': avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
|
||
progress_bar.set_postfix(**logs)
|
||
|
||
if global_step >= args.max_train_steps:
|
||
break
|
||
|
||
if args.logging_dir is not None:
|
||
logs = {'epoch_loss': loss_total / len(train_dataloader)}
|
||
accelerator.log(logs, step=epoch + 1)
|
||
|
||
accelerator.wait_for_everyone()
|
||
|
||
if args.save_every_n_epochs is not None:
|
||
src_path = (
|
||
src_stable_diffusion_ckpt
|
||
if save_stable_diffusion_format
|
||
else src_diffusers_model_path
|
||
)
|
||
train_util.save_sd_model_on_epoch_end(
|
||
args,
|
||
accelerator,
|
||
src_path,
|
||
save_stable_diffusion_format,
|
||
use_safetensors,
|
||
save_dtype,
|
||
epoch,
|
||
num_train_epochs,
|
||
global_step,
|
||
unwrap_model(text_encoder),
|
||
unwrap_model(unet),
|
||
vae,
|
||
)
|
||
|
||
is_main_process = accelerator.is_main_process
|
||
if is_main_process:
|
||
unet = unwrap_model(unet)
|
||
text_encoder = unwrap_model(text_encoder)
|
||
|
||
accelerator.end_training()
|
||
|
||
if args.save_state:
|
||
train_util.save_state_on_train_end(args, accelerator)
|
||
|
||
del accelerator # この後メモリを使うのでこれは消す
|
||
|
||
if is_main_process:
|
||
src_path = (
|
||
src_stable_diffusion_ckpt
|
||
if save_stable_diffusion_format
|
||
else src_diffusers_model_path
|
||
)
|
||
train_util.save_sd_model_on_train_end(
|
||
args,
|
||
src_path,
|
||
save_stable_diffusion_format,
|
||
use_safetensors,
|
||
save_dtype,
|
||
epoch,
|
||
global_step,
|
||
text_encoder,
|
||
unet,
|
||
vae,
|
||
)
|
||
print('model saved.')
|
||
|
||
|
||
if __name__ == '__main__':
|
||
parser = argparse.ArgumentParser()
|
||
|
||
train_util.add_sd_models_arguments(parser)
|
||
train_util.add_dataset_arguments(parser, False, True)
|
||
train_util.add_training_arguments(parser, False)
|
||
train_util.add_sd_saving_arguments(parser)
|
||
|
||
parser.add_argument(
|
||
'--diffusers_xformers',
|
||
action='store_true',
|
||
help='use xformers by diffusers / Diffusersでxformersを使用する',
|
||
)
|
||
parser.add_argument(
|
||
'--train_text_encoder',
|
||
action='store_true',
|
||
help='train text encoder / text encoderも学習する',
|
||
)
|
||
|
||
args = parser.parse_args()
|
||
train(args)
|