KohyaSS/finetune_gui.py
2022-12-21 09:05:06 -05:00

811 lines
28 KiB
Python

import gradio as gr
import json
import math
import os
import subprocess
import pathlib
import shutil
import argparse
# from easygui import fileopenbox, filesavebox, diropenbox, msgbox
from library.basic_caption_gui import gradio_basic_caption_gui_tab
from library.convert_model_gui import gradio_convert_model_tab
from library.blip_caption_gui import gradio_blip_caption_gui_tab
from library.wd14_caption_gui import gradio_wd14_caption_gui_tab
from library.common_gui import (
get_folder_path,
get_file_path,
get_saveasfile_path,
)
folder_symbol = '\U0001f4c2' # 📂
refresh_symbol = '\U0001f504' # 🔄
save_style_symbol = '\U0001f4be' # 💾
document_symbol = '\U0001F4C4' # 📄
def save_configuration(
save_as,
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
train_dir,
image_folder,
output_dir,
logging_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
dataset_repeats,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
train_text_encoder,
create_buckets,
create_caption,
train,
save_model_as,
caption_extension,
):
original_file_path = file_path
save_as_bool = True if save_as.get('label') == 'True' else False
if save_as_bool:
print('Save as...')
file_path = get_saveasfile_path(file_path)
else:
print('Save...')
if file_path == None or file_path == '':
file_path = get_saveasfile_path(file_path)
# print(file_path)
if file_path == None:
return original_file_path
# Return the values of the variables as a dictionary
variables = {
'pretrained_model_name_or_path': pretrained_model_name_or_path,
'v2': v2,
'v_parameterization': v_parameterization,
'train_dir': train_dir,
'image_folder': image_folder,
'output_dir': output_dir,
'logging_dir': logging_dir,
'max_resolution': max_resolution,
'learning_rate': learning_rate,
'lr_scheduler': lr_scheduler,
'lr_warmup': lr_warmup,
'dataset_repeats': dataset_repeats,
'train_batch_size': train_batch_size,
'epoch': epoch,
'save_every_n_epochs': save_every_n_epochs,
'mixed_precision': mixed_precision,
'save_precision': save_precision,
'seed': seed,
'num_cpu_threads_per_process': num_cpu_threads_per_process,
'train_text_encoder': train_text_encoder,
'create_buckets': create_buckets,
'create_caption': create_caption,
'train': train,
'save_model_as': save_model_as,
'caption_extension': caption_extension,
}
# Save the data to the selected file
with open(file_path, 'w') as file:
json.dump(variables, file)
return file_path
def open_config_file(
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
train_dir,
image_folder,
output_dir,
logging_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
dataset_repeats,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
train_text_encoder,
create_buckets,
create_caption,
train,
save_model_as,
caption_extension,
):
original_file_path = file_path
file_path = get_file_path(file_path)
if file_path != '' and file_path != None:
print(file_path)
# load variables from JSON file
with open(file_path, 'r') as f:
my_data = json.load(f)
else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data = {}
# Return the values of the variables as a dictionary
return (
file_path,
my_data.get(
'pretrained_model_name_or_path', pretrained_model_name_or_path
),
my_data.get('v2', v2),
my_data.get('v_parameterization', v_parameterization),
my_data.get('train_dir', train_dir),
my_data.get('image_folder', image_folder),
my_data.get('output_dir', output_dir),
my_data.get('logging_dir', logging_dir),
my_data.get('max_resolution', max_resolution),
my_data.get('learning_rate', learning_rate),
my_data.get('lr_scheduler', lr_scheduler),
my_data.get('lr_warmup', lr_warmup),
my_data.get('dataset_repeats', dataset_repeats),
my_data.get('train_batch_size', train_batch_size),
my_data.get('epoch', epoch),
my_data.get('save_every_n_epochs', save_every_n_epochs),
my_data.get('mixed_precision', mixed_precision),
my_data.get('save_precision', save_precision),
my_data.get('seed', seed),
my_data.get(
'num_cpu_threads_per_process', num_cpu_threads_per_process
),
my_data.get('train_text_encoder', train_text_encoder),
my_data.get('create_buckets', create_buckets),
my_data.get('create_caption', create_caption),
my_data.get('train', train),
my_data.get('save_model_as', save_model_as),
my_data.get('caption_extension', caption_extension),
)
def train_model(
generate_caption_database,
generate_image_buckets,
train,
pretrained_model_name_or_path,
v2,
v_parameterization,
train_dir,
image_folder,
output_dir,
logging_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
dataset_repeats,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
train_text_encoder,
save_model_as,
caption_extension,
):
def save_inference_file(output_dir, v2, v_parameterization):
# Copy inference model for v2 if required
if v2 and v_parameterization:
print(f'Saving v2-inference-v.yaml as {output_dir}/last.yaml')
shutil.copy(
f'./v2_inference/v2-inference-v.yaml',
f'{output_dir}/last.yaml',
)
elif v2:
print(f'Saving v2-inference.yaml as {output_dir}/last.yaml')
shutil.copy(
f'./v2_inference/v2-inference.yaml',
f'{output_dir}/last.yaml',
)
# create caption json file
if generate_caption_database:
if not os.path.exists(train_dir):
os.mkdir(train_dir)
run_cmd = (
f'./venv/Scripts/python.exe finetune/merge_captions_to_metadata.py'
)
if caption_extension == '':
run_cmd += f' --caption_extension=".txt"'
else:
run_cmd += f' --caption_extension={caption_extension}'
run_cmd += f' {image_folder}'
run_cmd += f' {train_dir}/meta_cap.json'
run_cmd += f' --full_path'
print(run_cmd)
# Run the command
subprocess.run(run_cmd)
# create images buckets
if generate_image_buckets:
command = [
'./venv/Scripts/python.exe',
'finetune/prepare_buckets_latents.py',
image_folder,
'{}/meta_cap.json'.format(train_dir),
'{}/meta_lat.json'.format(train_dir),
pretrained_model_name_or_path,
'--batch_size',
'4',
'--max_resolution',
max_resolution,
'--mixed_precision',
mixed_precision,
'--full_path',
]
print(command)
# Run the command
subprocess.run(command)
if train:
image_num = len(
[f for f in os.listdir(image_folder) if f.endswith('.npz')]
)
print(f'image_num = {image_num}')
repeats = int(image_num) * int(dataset_repeats)
print(f'repeats = {str(repeats)}')
# calculate max_train_steps
max_train_steps = int(
math.ceil(float(repeats) / int(train_batch_size) * int(epoch))
)
print(f'max_train_steps = {max_train_steps}')
lr_warmup_steps = round(
float(int(lr_warmup) * int(max_train_steps) / 100)
)
print(f'lr_warmup_steps = {lr_warmup_steps}')
run_cmd = f'accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process} "./fine_tune.py"'
if v2:
run_cmd += ' --v2'
if v_parameterization:
run_cmd += ' --v_parameterization'
if train_text_encoder:
run_cmd += ' --train_text_encoder'
run_cmd += (
f' --pretrained_model_name_or_path={pretrained_model_name_or_path}'
)
run_cmd += f' --in_json={train_dir}/meta_lat.json'
run_cmd += f' --train_data_dir={image_folder}'
run_cmd += f' --output_dir={output_dir}'
if not logging_dir == '':
run_cmd += f' --logging_dir={logging_dir}'
run_cmd += f' --train_batch_size={train_batch_size}'
run_cmd += f' --dataset_repeats={dataset_repeats}'
run_cmd += f' --learning_rate={learning_rate}'
run_cmd += f' --lr_scheduler={lr_scheduler}'
run_cmd += f' --lr_warmup_steps={lr_warmup_steps}'
run_cmd += f' --max_train_steps={max_train_steps}'
run_cmd += f' --use_8bit_adam'
run_cmd += f' --xformers'
run_cmd += f' --mixed_precision={mixed_precision}'
run_cmd += f' --save_every_n_epochs={save_every_n_epochs}'
run_cmd += f' --seed={seed}'
run_cmd += f' --save_precision={save_precision}'
if not save_model_as == 'same as source model':
run_cmd += f' --save_model_as={save_model_as}'
print(run_cmd)
# Run the command
subprocess.run(run_cmd)
# check if output_dir/last is a folder... therefore it is a diffuser model
last_dir = pathlib.Path(f'{output_dir}/last')
if not last_dir.is_dir():
# Copy inference model for v2 if required
save_inference_file(output_dir, v2, v_parameterization)
def set_pretrained_model_name_or_path_input(value, v2, v_parameterization):
# define a list of substrings to search for
substrings_v2 = [
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list
if str(value) in substrings_v2:
print('SD v2 model detected. Setting --v2 parameter')
v2 = True
v_parameterization = False
return value, v2, v_parameterization
# define a list of substrings to search for v-objective
substrings_v_parameterization = [
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
]
# check if $v2 and $v_parameterization are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_parameterization list
if str(value) in substrings_v_parameterization:
print(
'SD v2 v_parameterization detected. Setting --v2 parameter and --v_parameterization'
)
v2 = True
v_parameterization = True
return value, v2, v_parameterization
# define a list of substrings to v1.x
substrings_v1_model = [
'CompVis/stable-diffusion-v1-4',
'runwayml/stable-diffusion-v1-5',
]
if str(value) in substrings_v1_model:
v2 = False
v_parameterization = False
return value, v2, v_parameterization
if value == 'custom':
value = ''
v2 = False
v_parameterization = False
return value, v2, v_parameterization
def remove_doublequote(file_path):
if file_path != None:
file_path = file_path.replace('"', '')
return file_path
def UI(username, password):
css = ''
if os.path.exists('./style.css'):
with open(os.path.join('./style.css'), 'r', encoding='utf8') as file:
print('Load CSS...')
css += file.read() + '\n'
interface = gr.Blocks(css=css)
with interface:
dummy_true = gr.Label(value=True, visible=False)
dummy_false = gr.Label(value=False, visible=False)
with gr.Tab('Finetuning'):
gr.Markdown('Enter kohya finetuner parameter using this interface.')
with gr.Accordion('Configuration File Load/Save', open=False):
with gr.Row():
button_open_config = gr.Button(
f'Open {folder_symbol}', elem_id='open_folder'
)
button_save_config = gr.Button(
f'Save {save_style_symbol}', elem_id='open_folder'
)
button_save_as_config = gr.Button(
f'Save as... {save_style_symbol}', elem_id='open_folder'
)
config_file_name = gr.Textbox(
label='', placeholder='type file path or use buttons...'
)
config_file_name.change(
remove_doublequote,
inputs=[config_file_name],
outputs=[config_file_name],
)
with gr.Tab('Source model'):
# Define the input elements
with gr.Row():
pretrained_model_name_or_path_input = gr.Textbox(
label='Pretrained model name or path',
placeholder='enter the path to custom model or name of pretrained model',
)
pretrained_model_name_or_path_file = gr.Button(
document_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_file.click(
get_file_path,
inputs=pretrained_model_name_or_path_input,
outputs=pretrained_model_name_or_path_input,
)
pretrained_model_name_or_path_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_folder.click(
get_folder_path,
inputs=pretrained_model_name_or_path_input,
outputs=pretrained_model_name_or_path_input,
)
model_list = gr.Dropdown(
label='(Optional) Model Quick Pick',
choices=[
'custom',
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
'runwayml/stable-diffusion-v1-5',
'CompVis/stable-diffusion-v1-4',
],
)
save_model_as_dropdown = gr.Dropdown(
label='Save trained model as',
choices=[
'same as source model',
'ckpt',
'diffusers',
'diffusers_safetensors',
'safetensors',
],
value='same as source model',
)
with gr.Row():
v2_input = gr.Checkbox(label='v2', value=True)
v_parameterization_input = gr.Checkbox(
label='v_parameterization', value=False
)
model_list.change(
set_pretrained_model_name_or_path_input,
inputs=[model_list, v2_input, v_parameterization_input],
outputs=[
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
],
)
with gr.Tab('Directories'):
with gr.Row():
train_dir_input = gr.Textbox(
label='Training config folder',
placeholder='folder where the training configuration files will be saved',
)
train_dir_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
train_dir_folder.click(
get_folder_path, outputs=train_dir_input
)
image_folder_input = gr.Textbox(
label='Training Image folder',
placeholder='folder where the training images are located',
)
image_folder_input_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
image_folder_input_folder.click(
get_folder_path, outputs=image_folder_input
)
with gr.Row():
output_dir_input = gr.Textbox(
label='Output folder',
placeholder='folder where the model will be saved',
)
output_dir_input_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
output_dir_input_folder.click(
get_folder_path, outputs=output_dir_input
)
logging_dir_input = gr.Textbox(
label='Logging folder',
placeholder='Optional: enable logging and output TensorBoard log to this folder',
)
logging_dir_input_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
logging_dir_input_folder.click(
get_folder_path, outputs=logging_dir_input
)
train_dir_input.change(
remove_doublequote,
inputs=[train_dir_input],
outputs=[train_dir_input],
)
image_folder_input.change(
remove_doublequote,
inputs=[image_folder_input],
outputs=[image_folder_input],
)
output_dir_input.change(
remove_doublequote,
inputs=[output_dir_input],
outputs=[output_dir_input],
)
with gr.Tab('Training parameters'):
with gr.Row():
learning_rate_input = gr.Textbox(
label='Learning rate', value=1e-6
)
lr_scheduler_input = gr.Dropdown(
label='LR Scheduler',
choices=[
'constant',
'constant_with_warmup',
'cosine',
'cosine_with_restarts',
'linear',
'polynomial',
],
value='constant',
)
lr_warmup_input = gr.Textbox(label='LR warmup', value=0)
with gr.Row():
dataset_repeats_input = gr.Textbox(
label='Dataset repeats', value=40
)
train_batch_size_input = gr.Slider(
minimum=1,
maximum=32,
label='Train batch size',
value=1,
step=1,
)
epoch_input = gr.Textbox(label='Epoch', value=1)
save_every_n_epochs_input = gr.Textbox(
label='Save every N epochs', value=1
)
with gr.Row():
mixed_precision_input = gr.Dropdown(
label='Mixed precision',
choices=[
'no',
'fp16',
'bf16',
],
value='fp16',
)
save_precision_input = gr.Dropdown(
label='Save precision',
choices=[
'float',
'fp16',
'bf16',
],
value='fp16',
)
num_cpu_threads_per_process_input = gr.Slider(
minimum=1,
maximum=os.cpu_count(),
step=1,
label='Number of CPU threads per process',
value=os.cpu_count(),
)
with gr.Row():
seed_input = gr.Textbox(label='Seed', value=1234)
max_resolution_input = gr.Textbox(
label='Max resolution', value='512,512'
)
with gr.Row():
caption_extention_input = gr.Textbox(
label='Caption Extension',
placeholder='(Optional) Extension for caption files. default: .txt',
)
train_text_encoder_input = gr.Checkbox(
label='Train text encoder', value=True
)
with gr.Box():
with gr.Row():
create_caption = gr.Checkbox(
label='Generate caption database', value=True
)
create_buckets = gr.Checkbox(
label='Generate image buckets', value=True
)
train = gr.Checkbox(label='Train model', value=True)
button_run = gr.Button('Run')
button_run.click(
train_model,
inputs=[
create_caption,
create_buckets,
train,
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
train_dir_input,
image_folder_input,
output_dir_input,
logging_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
dataset_repeats_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
train_text_encoder_input,
save_model_as_dropdown,
caption_extention_input,
],
)
button_open_config.click(
open_config_file,
inputs=[
config_file_name,
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
train_dir_input,
image_folder_input,
output_dir_input,
logging_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
dataset_repeats_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
train_text_encoder_input,
create_buckets,
create_caption,
train,
save_model_as_dropdown,
caption_extention_input,
],
outputs=[
config_file_name,
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
train_dir_input,
image_folder_input,
output_dir_input,
logging_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
dataset_repeats_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
train_text_encoder_input,
create_buckets,
create_caption,
train,
save_model_as_dropdown,
caption_extention_input,
],
)
button_save_config.click(
save_configuration,
inputs=[
dummy_false,
config_file_name,
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
train_dir_input,
image_folder_input,
output_dir_input,
logging_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
dataset_repeats_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
train_text_encoder_input,
create_buckets,
create_caption,
train,
save_model_as_dropdown,
caption_extention_input,
],
outputs=[config_file_name],
)
button_save_as_config.click(
save_configuration,
inputs=[
dummy_true,
config_file_name,
pretrained_model_name_or_path_input,
v2_input,
v_parameterization_input,
train_dir_input,
image_folder_input,
output_dir_input,
logging_dir_input,
max_resolution_input,
learning_rate_input,
lr_scheduler_input,
lr_warmup_input,
dataset_repeats_input,
train_batch_size_input,
epoch_input,
save_every_n_epochs_input,
mixed_precision_input,
save_precision_input,
seed_input,
num_cpu_threads_per_process_input,
train_text_encoder_input,
create_buckets,
create_caption,
train,
save_model_as_dropdown,
caption_extention_input,
],
outputs=[config_file_name],
)
with gr.Tab('Utilities'):
gradio_basic_caption_gui_tab()
gradio_blip_caption_gui_tab()
gradio_wd14_caption_gui_tab()
gradio_convert_model_tab()
# Show the interface
if not username == '':
interface.launch(auth=(username, password))
else:
interface.launch()
if __name__ == '__main__':
# torch.cuda.set_per_process_memory_fraction(0.48)
parser = argparse.ArgumentParser()
parser.add_argument("--username", type=str, default='', help="Username for authentication")
parser.add_argument("--password", type=str, default='', help="Password for authentication")
args = parser.parse_args()
UI(username=args.username, password=args.password)