KohyaSS/networks/svd_merge_lora.py
2023-03-10 11:44:52 -05:00

183 lines
6.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import math
import argparse
import os
import torch
from safetensors.torch import load_file, save_file
from tqdm import tqdm
import library.model_util as model_util
import lora
CLAMP_QUANTILE = 0.99
def load_state_dict(file_name, dtype):
if os.path.splitext(file_name)[1] == '.safetensors':
sd = load_file(file_name)
else:
sd = torch.load(file_name, map_location='cpu')
for key in list(sd.keys()):
if type(sd[key]) == torch.Tensor:
sd[key] = sd[key].to(dtype)
return sd
def save_to_file(file_name, state_dict, dtype):
if dtype is not None:
for key in list(state_dict.keys()):
if type(state_dict[key]) == torch.Tensor:
state_dict[key] = state_dict[key].to(dtype)
if os.path.splitext(file_name)[1] == '.safetensors':
save_file(state_dict, file_name)
else:
torch.save(state_dict, file_name)
def merge_lora_models(models, ratios, new_rank, new_conv_rank, device, merge_dtype):
print(f"new rank: {new_rank}, new conv rank: {new_conv_rank}")
merged_sd = {}
for model, ratio in zip(models, ratios):
print(f"loading: {model}")
lora_sd = load_state_dict(model, merge_dtype)
# merge
print(f"merging...")
for key in tqdm(list(lora_sd.keys())):
if 'lora_down' not in key:
continue
lora_module_name = key[:key.rfind(".lora_down")]
down_weight = lora_sd[key]
network_dim = down_weight.size()[0]
up_weight = lora_sd[lora_module_name + '.lora_up.weight']
alpha = lora_sd.get(lora_module_name + '.alpha', network_dim)
in_dim = down_weight.size()[1]
out_dim = up_weight.size()[0]
conv2d = len(down_weight.size()) == 4
kernel_size = None if not conv2d else down_weight.size()[2:4]
# print(lora_module_name, network_dim, alpha, in_dim, out_dim, kernel_size)
# make original weight if not exist
if lora_module_name not in merged_sd:
weight = torch.zeros((out_dim, in_dim, *kernel_size) if conv2d else (out_dim, in_dim), dtype=merge_dtype)
if device:
weight = weight.to(device)
else:
weight = merged_sd[lora_module_name]
# merge to weight
if device:
up_weight = up_weight.to(device)
down_weight = down_weight.to(device)
# W <- W + U * D
scale = (alpha / network_dim).to(device)
if not conv2d: # linear
weight = weight + ratio * (up_weight @ down_weight) * scale
elif kernel_size == (1, 1):
weight = weight + ratio * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)
).unsqueeze(2).unsqueeze(3) * scale
else:
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
weight = weight + ratio * conved * scale
merged_sd[lora_module_name] = weight
# extract from merged weights
print("extract new lora...")
merged_lora_sd = {}
with torch.no_grad():
for lora_module_name, mat in tqdm(list(merged_sd.items())):
conv2d = (len(mat.size()) == 4)
kernel_size = None if not conv2d else mat.size()[2:4]
conv2d_3x3 = conv2d and kernel_size != (1, 1)
out_dim, in_dim = mat.size()[0:2]
if conv2d:
if conv2d_3x3:
mat = mat.flatten(start_dim=1)
else:
mat = mat.squeeze()
module_new_rank = new_conv_rank if conv2d_3x3 else new_rank
module_new_rank = min(module_new_rank, in_dim, out_dim) # LoRA rank cannot exceed the original dim
U, S, Vh = torch.linalg.svd(mat)
U = U[:, :module_new_rank]
S = S[:module_new_rank]
U = U @ torch.diag(S)
Vh = Vh[:module_new_rank, :]
# dist = torch.cat([U.flatten(), Vh.flatten()])
# hi_val = torch.quantile(dist, CLAMP_QUANTILE)
# low_val = -hi_val
# U = U.clamp(low_val, hi_val)
# Vh = Vh.clamp(low_val, hi_val)
if conv2d:
U = U.reshape(out_dim, module_new_rank, 1, 1)
Vh = Vh.reshape(module_new_rank, in_dim, kernel_size[0], kernel_size[1])
up_weight = U
down_weight = Vh
merged_lora_sd[lora_module_name + '.lora_up.weight'] = up_weight.to("cpu").contiguous()
merged_lora_sd[lora_module_name + '.lora_down.weight'] = down_weight.to("cpu").contiguous()
merged_lora_sd[lora_module_name + '.alpha'] = torch.tensor(module_new_rank)
return merged_lora_sd
def merge(args):
assert len(args.models) == len(args.ratios), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください"
def str_to_dtype(p):
if p == 'float':
return torch.float
if p == 'fp16':
return torch.float16
if p == 'bf16':
return torch.bfloat16
return None
merge_dtype = str_to_dtype(args.precision)
save_dtype = str_to_dtype(args.save_precision)
if save_dtype is None:
save_dtype = merge_dtype
new_conv_rank = args.new_conv_rank if args.new_conv_rank is not None else args.new_rank
state_dict = merge_lora_models(args.models, args.ratios, args.new_rank, new_conv_rank, args.device, merge_dtype)
print(f"saving model to: {args.save_to}")
save_to_file(args.save_to, state_dict, save_dtype)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--save_precision", type=str, default=None,
choices=[None, "float", "fp16", "bf16"], help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ")
parser.add_argument("--precision", type=str, default="float",
choices=["float", "fp16", "bf16"], help="precision in merging (float is recommended) / マージの計算時の精度floatを推奨")
parser.add_argument("--save_to", type=str, default=None,
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors")
parser.add_argument("--models", type=str, nargs='*',
help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors")
parser.add_argument("--ratios", type=float, nargs='*',
help="ratios for each model / それぞれのLoRAモデルの比率")
parser.add_argument("--new_rank", type=int, default=4,
help="Specify rank of output LoRA / 出力するLoRAのrank (dim)")
parser.add_argument("--new_conv_rank", type=int, default=None,
help="Specify rank of output LoRA for Conv2d 3x3, None for same as new_rank / 出力するConv2D 3x3 LoRAのrank (dim)、Noneでnew_rankと同じ")
parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う")
args = parser.parse_args()
merge(args)