WebUI/modules/sd_models.py

620 lines
21 KiB
Python
Raw Normal View History

import collections
import os.path
import sys
import gc
import threading
import torch
import re
2022-11-27 14:46:40 +03:00
import safetensors.torch
from omegaconf import OmegaConf
2022-12-08 18:14:35 -06:00
from os import mkdir
from urllib import request
import ldm.modules.midas as midas
from ldm.util import instantiate_from_config
2023-05-27 15:47:33 +03:00
from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet
from modules.sd_hijack_inpainting import do_inpainting_hijack
from modules.timer import Timer
import tomesd
model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(paths.models_path, model_dir))
checkpoints_list = {}
2023-01-14 09:56:59 +03:00
checkpoint_alisases = {}
checkpoints_loaded = collections.OrderedDict()
2023-01-14 09:56:59 +03:00
class CheckpointInfo:
def __init__(self, filename):
self.filename = filename
abspath = os.path.abspath(filename)
if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir):
name = abspath.replace(shared.cmd_opts.ckpt_dir, '')
elif abspath.startswith(model_path):
name = abspath.replace(model_path, '')
else:
name = os.path.basename(filename)
if name.startswith("\\") or name.startswith("/"):
name = name[1:]
self.name = name
self.name_for_extra = os.path.splitext(os.path.basename(filename))[0]
2023-01-14 09:56:59 +03:00
self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
self.hash = model_hash(filename)
self.sha256 = hashes.sha256_from_cache(self.filename, f"checkpoint/{name}")
self.shorthash = self.sha256[0:10] if self.sha256 else None
self.title = name if self.shorthash is None else f'{name} [{self.shorthash}]'
self.ids = [self.hash, self.model_name, self.title, name, f'{name} [{self.hash}]'] + ([self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]'] if self.shorthash else [])
2023-01-14 09:56:59 +03:00
self.metadata = {}
_, ext = os.path.splitext(self.filename)
if ext.lower() == ".safetensors":
try:
self.metadata = read_metadata_from_safetensors(filename)
except Exception as e:
errors.display(e, f"reading checkpoint metadata: {filename}")
2023-01-14 09:56:59 +03:00
def register(self):
checkpoints_list[self.title] = self
for id in self.ids:
checkpoint_alisases[id] = self
def calculate_shorthash(self):
self.sha256 = hashes.sha256(self.filename, f"checkpoint/{self.name}")
2023-02-04 11:38:56 +03:00
if self.sha256 is None:
return
2023-01-14 09:56:59 +03:00
self.shorthash = self.sha256[0:10]
if self.shorthash not in self.ids:
self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]']
2023-01-14 09:56:59 +03:00
checkpoints_list.pop(self.title)
self.title = f'{self.name} [{self.shorthash}]'
self.register()
2023-01-14 09:56:59 +03:00
return self.shorthash
try:
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
2023-05-10 09:02:23 +03:00
from transformers import logging, CLIPModel # noqa: F401
logging.set_verbosity_error()
except Exception:
pass
def setup_model():
if not os.path.exists(model_path):
os.makedirs(model_path)
2022-12-08 18:14:35 -06:00
enable_midas_autodownload()
2023-01-14 09:56:59 +03:00
def checkpoint_tiles():
def convert(name):
return int(name) if name.isdigit() else name.lower()
def alphanumeric_key(key):
return [convert(c) for c in re.split('([0-9]+)', key)]
return sorted([x.title for x in checkpoints_list.values()], key=alphanumeric_key)
def list_models():
checkpoints_list.clear()
2023-01-14 09:56:59 +03:00
checkpoint_alisases.clear()
cmd_ckpt = shared.cmd_opts.ckpt
2023-02-19 20:49:07 +09:00
if shared.cmd_opts.no_download_sd_model or cmd_ckpt != shared.sd_model_file or os.path.exists(cmd_ckpt):
2023-02-19 20:37:40 +09:00
model_url = None
else:
model_url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors"
model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], download_name="v1-5-pruned-emaonly.safetensors", ext_blacklist=[".vae.ckpt", ".vae.safetensors"])
if os.path.exists(cmd_ckpt):
2023-01-14 09:56:59 +03:00
checkpoint_info = CheckpointInfo(cmd_ckpt)
checkpoint_info.register()
shared.opts.data['sd_model_checkpoint'] = checkpoint_info.title
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
2023-01-14 09:56:59 +03:00
for filename in sorted(model_list, key=str.lower):
2023-01-14 09:56:59 +03:00
checkpoint_info = CheckpointInfo(filename)
checkpoint_info.register()
2023-01-14 09:56:59 +03:00
def get_closet_checkpoint_match(search_string):
checkpoint_info = checkpoint_alisases.get(search_string, None)
if checkpoint_info is not None:
2023-01-14 10:25:21 +03:00
return checkpoint_info
2023-01-14 09:56:59 +03:00
found = sorted([info for info in checkpoints_list.values() if search_string in info.title], key=lambda x: len(x.title))
if found:
return found[0]
2022-09-28 22:30:09 +01:00
return None
def model_hash(filename):
2023-01-14 09:56:59 +03:00
"""old hash that only looks at a small part of the file and is prone to collisions"""
try:
with open(filename, "rb") as file:
import hashlib
m = hashlib.sha256()
file.seek(0x100000)
m.update(file.read(0x10000))
return m.hexdigest()[0:8]
except FileNotFoundError:
return 'NOFILE'
def select_checkpoint():
"""Raises `FileNotFoundError` if no checkpoints are found."""
model_checkpoint = shared.opts.sd_model_checkpoint
2023-01-14 09:56:59 +03:00
checkpoint_info = checkpoint_alisases.get(model_checkpoint, None)
if checkpoint_info is not None:
return checkpoint_info
if len(checkpoints_list) == 0:
error_message = "No checkpoints found. When searching for checkpoints, looked at:"
if shared.cmd_opts.ckpt is not None:
error_message += f"\n - file {os.path.abspath(shared.cmd_opts.ckpt)}"
error_message += f"\n - directory {model_path}"
if shared.cmd_opts.ckpt_dir is not None:
error_message += f"\n - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}"
error_message += "Can't run without a checkpoint. Find and place a .ckpt or .safetensors file into any of those locations."
raise FileNotFoundError(error_message)
checkpoint_info = next(iter(checkpoints_list.values()))
if model_checkpoint is not None:
print(f"Checkpoint {model_checkpoint} not found; loading fallback {checkpoint_info.title}", file=sys.stderr)
return checkpoint_info
2023-03-23 14:28:08 +09:00
checkpoint_dict_replacements = {
'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.',
'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.',
'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.',
}
def transform_checkpoint_dict_key(k):
2023-03-23 14:28:08 +09:00
for text, replacement in checkpoint_dict_replacements.items():
if k.startswith(text):
k = replacement + k[len(text):]
return k
def get_state_dict_from_checkpoint(pl_sd):
pl_sd = pl_sd.pop("state_dict", pl_sd)
pl_sd.pop("state_dict", None)
sd = {}
for k, v in pl_sd.items():
new_key = transform_checkpoint_dict_key(k)
if new_key is not None:
sd[new_key] = v
2022-10-19 12:45:30 +03:00
pl_sd.clear()
pl_sd.update(sd)
return pl_sd
def read_metadata_from_safetensors(filename):
import json
with open(filename, mode="rb") as file:
metadata_len = file.read(8)
metadata_len = int.from_bytes(metadata_len, "little")
json_start = file.read(2)
assert metadata_len > 2 and json_start in (b'{"', b"{'"), f"{filename} is not a safetensors file"
json_data = json_start + file.read(metadata_len-2)
json_obj = json.loads(json_data)
res = {}
for k, v in json_obj.get("__metadata__", {}).items():
res[k] = v
if isinstance(v, str) and v[0:1] == '{':
try:
res[k] = json.loads(v)
2023-05-10 07:52:45 +03:00
except Exception:
pass
return res
def read_state_dict(checkpoint_file, print_global_state=False, map_location=None):
_, extension = os.path.splitext(checkpoint_file)
if extension.lower() == ".safetensors":
device = map_location or shared.weight_load_location or devices.get_optimal_device_name()
pl_sd = safetensors.torch.load_file(checkpoint_file, device=device)
else:
pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location)
if print_global_state and "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = get_state_dict_from_checkpoint(pl_sd)
return sd
def get_checkpoint_state_dict(checkpoint_info: CheckpointInfo, timer):
sd_model_hash = checkpoint_info.calculate_shorthash()
timer.record("calculate hash")
if checkpoint_info in checkpoints_loaded:
# use checkpoint cache
print(f"Loading weights [{sd_model_hash}] from cache")
return checkpoints_loaded[checkpoint_info]
print(f"Loading weights [{sd_model_hash}] from {checkpoint_info.filename}")
res = read_state_dict(checkpoint_info.filename)
timer.record("load weights from disk")
return res
def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer):
2023-01-14 09:56:59 +03:00
sd_model_hash = checkpoint_info.calculate_shorthash()
timer.record("calculate hash")
shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title
if state_dict is None:
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
model.load_state_dict(state_dict, strict=False)
del state_dict
timer.record("apply weights to model")
if shared.opts.sd_checkpoint_cache > 0:
# cache newly loaded model
checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
if shared.cmd_opts.opt_channelslast:
model.to(memory_format=torch.channels_last)
timer.record("apply channels_last")
if not shared.cmd_opts.no_half:
vae = model.first_stage_model
depth_model = getattr(model, 'depth_model', None)
# with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16
if shared.cmd_opts.no_half_vae:
model.first_stage_model = None
# with --upcast-sampling, don't convert the depth model weights to float16
if shared.cmd_opts.upcast_sampling and depth_model:
model.depth_model = None
2022-11-02 14:41:29 +03:00
model.half()
model.first_stage_model = vae
if depth_model:
model.depth_model = depth_model
2022-11-02 14:41:29 +03:00
timer.record("apply half()")
devices.dtype_unet = model.model.diffusion_model.dtype
devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16
model.first_stage_model.to(devices.dtype_vae)
timer.record("apply dtype to VAE")
2022-11-02 14:41:29 +03:00
# clean up cache if limit is reached
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
checkpoints_loaded.popitem(last=False)
2022-10-31 16:27:27 +07:00
model.sd_model_hash = sd_model_hash
2023-01-14 09:56:59 +03:00
model.sd_model_checkpoint = checkpoint_info.filename
model.sd_checkpoint_info = checkpoint_info
shared.opts.data["sd_checkpoint_hash"] = checkpoint_info.sha256
2023-01-02 00:38:09 +03:00
model.logvar = model.logvar.to(devices.device) # fix for training
2022-11-13 11:11:14 +07:00
sd_vae.delete_base_vae()
sd_vae.clear_loaded_vae()
vae_file, vae_source = sd_vae.resolve_vae(checkpoint_info.filename)
sd_vae.load_vae(model, vae_file, vae_source)
timer.record("load VAE")
2022-12-08 18:14:35 -06:00
def enable_midas_autodownload():
"""
Gives the ldm.modules.midas.api.load_model function automatic downloading.
When the 512-depth-ema model, and other future models like it, is loaded,
it calls midas.api.load_model to load the associated midas depth model.
This function applies a wrapper to download the model to the correct
location automatically.
"""
midas_path = os.path.join(paths.models_path, 'midas')
2022-12-08 18:14:35 -06:00
# stable-diffusion-stability-ai hard-codes the midas model path to
# a location that differs from where other scripts using this model look.
# HACK: Overriding the path here.
for k, v in midas.api.ISL_PATHS.items():
file_name = os.path.basename(v)
midas.api.ISL_PATHS[k] = os.path.join(midas_path, file_name)
midas_urls = {
"dpt_large": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
"dpt_hybrid": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt",
"midas_v21": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21-f6b98070.pt",
"midas_v21_small": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21_small-70d6b9c8.pt",
}
midas.api.load_model_inner = midas.api.load_model
def load_model_wrapper(model_type):
path = midas.api.ISL_PATHS[model_type]
if not os.path.exists(path):
if not os.path.exists(midas_path):
mkdir(midas_path)
2022-12-08 18:14:35 -06:00
print(f"Downloading midas model weights for {model_type} to {path}")
request.urlretrieve(midas_urls[model_type], path)
print(f"{model_type} downloaded")
return midas.api.load_model_inner(model_type)
midas.api.load_model = load_model_wrapper
def repair_config(sd_config):
if not hasattr(sd_config.model.params, "use_ema"):
sd_config.model.params.use_ema = False
if shared.cmd_opts.no_half:
sd_config.model.params.unet_config.params.use_fp16 = False
elif shared.cmd_opts.upcast_sampling:
sd_config.model.params.unet_config.params.use_fp16 = True
if getattr(sd_config.model.params.first_stage_config.params.ddconfig, "attn_type", None) == "vanilla-xformers" and not shared.xformers_available:
sd_config.model.params.first_stage_config.params.ddconfig.attn_type = "vanilla"
# For UnCLIP-L, override the hardcoded karlo directory
if hasattr(sd_config.model.params, "noise_aug_config") and hasattr(sd_config.model.params.noise_aug_config.params, "clip_stats_path"):
karlo_path = os.path.join(paths.models_path, 'karlo')
sd_config.model.params.noise_aug_config.params.clip_stats_path = sd_config.model.params.noise_aug_config.params.clip_stats_path.replace("checkpoints/karlo_models", karlo_path)
sd1_clip_weight = 'cond_stage_model.transformer.text_model.embeddings.token_embedding.weight'
sd2_clip_weight = 'cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight'
class SdModelData:
def __init__(self):
self.sd_model = None
self.was_loaded_at_least_once = False
self.lock = threading.Lock()
def get_sd_model(self):
if self.was_loaded_at_least_once:
return self.sd_model
if self.sd_model is None:
with self.lock:
if self.sd_model is not None or self.was_loaded_at_least_once:
return self.sd_model
try:
load_model()
except Exception as e:
errors.display(e, "loading stable diffusion model", full_traceback=True)
print("", file=sys.stderr)
print("Stable diffusion model failed to load", file=sys.stderr)
self.sd_model = None
return self.sd_model
def set_sd_model(self, v):
self.sd_model = v
model_data = SdModelData()
def load_model(checkpoint_info=None, already_loaded_state_dict=None):
from modules import lowvram, sd_hijack
checkpoint_info = checkpoint_info or select_checkpoint()
if model_data.sd_model:
sd_hijack.model_hijack.undo_hijack(model_data.sd_model)
model_data.sd_model = None
gc.collect()
devices.torch_gc()
do_inpainting_hijack()
timer = Timer()
if already_loaded_state_dict is not None:
state_dict = already_loaded_state_dict
else:
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
clip_is_included_into_sd = sd1_clip_weight in state_dict or sd2_clip_weight in state_dict
2022-11-26 13:28:44 -05:00
timer.record("find config")
sd_config = OmegaConf.load(checkpoint_config)
repair_config(sd_config)
timer.record("load config")
print(f"Creating model from config: {checkpoint_config}")
sd_model = None
try:
with sd_disable_initialization.DisableInitialization(disable_clip=clip_is_included_into_sd):
sd_model = instantiate_from_config(sd_config.model)
2023-05-10 07:52:45 +03:00
except Exception:
pass
if sd_model is None:
print('Failed to create model quickly; will retry using slow method.', file=sys.stderr)
sd_model = instantiate_from_config(sd_config.model)
sd_model.used_config = checkpoint_config
timer.record("create model")
load_model_weights(sd_model, checkpoint_info, state_dict, timer)
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
else:
sd_model.to(shared.device)
timer.record("move model to device")
sd_hijack.model_hijack.hijack(sd_model)
timer.record("hijack")
sd_model.eval()
model_data.sd_model = sd_model
model_data.was_loaded_at_least_once = True
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) # Reload embeddings after model load as they may or may not fit the model
timer.record("load textual inversion embeddings")
script_callbacks.model_loaded_callback(sd_model)
timer.record("scripts callbacks")
with devices.autocast(), torch.no_grad():
sd_model.cond_stage_model_empty_prompt = sd_model.cond_stage_model([""])
timer.record("calculate empty prompt")
print(f"Model loaded in {timer.summary()}.")
2022-12-31 11:27:02 -05:00
return sd_model
def reload_model_weights(sd_model=None, info=None):
from modules import lowvram, devices, sd_hijack
checkpoint_info = info or select_checkpoint()
if not sd_model:
sd_model = model_data.sd_model
if sd_model is None: # previous model load failed
current_checkpoint_info = None
else:
current_checkpoint_info = sd_model.sd_checkpoint_info
if sd_model.sd_model_checkpoint == checkpoint_info.filename:
return
2023-05-27 15:47:33 +03:00
sd_unet.apply_unet("None")
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu()
else:
sd_model.to(devices.cpu)
sd_hijack.model_hijack.undo_hijack(sd_model)
timer = Timer()
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
timer.record("find config")
if sd_model is None or checkpoint_config != sd_model.used_config:
del sd_model
load_model(checkpoint_info, already_loaded_state_dict=state_dict)
return model_data.sd_model
try:
load_model_weights(sd_model, checkpoint_info, state_dict, timer)
2023-05-10 07:52:45 +03:00
except Exception:
print("Failed to load checkpoint, restoring previous")
load_model_weights(sd_model, current_checkpoint_info, None, timer)
raise
finally:
sd_hijack.model_hijack.hijack(sd_model)
timer.record("hijack")
script_callbacks.model_loaded_callback(sd_model)
timer.record("script callbacks")
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
sd_model.to(devices.device)
timer.record("move model to device")
print(f"Weights loaded in {timer.summary()}.")
return sd_model
def unload_model_weights(sd_model=None, info=None):
2023-05-10 08:43:42 +03:00
from modules import devices, sd_hijack
timer = Timer()
if model_data.sd_model:
model_data.sd_model.to(devices.cpu)
sd_hijack.model_hijack.undo_hijack(model_data.sd_model)
model_data.sd_model = None
sd_model = None
gc.collect()
devices.torch_gc()
torch.cuda.empty_cache()
print(f"Unloaded weights {timer.summary()}.")
return sd_model
def apply_token_merging(sd_model, token_merging_ratio):
"""
Applies speed and memory optimizations from tomesd.
"""
current_token_merging_ratio = getattr(sd_model, 'applied_token_merged_ratio', 0)
if current_token_merging_ratio == token_merging_ratio:
return
if current_token_merging_ratio > 0:
tomesd.remove_patch(sd_model)
if token_merging_ratio > 0:
tomesd.apply_patch(
sd_model,
ratio=token_merging_ratio,
use_rand=False, # can cause issues with some samplers
merge_attn=True,
merge_crossattn=False,
merge_mlp=False
)
sd_model.applied_token_merged_ratio = token_merging_ratio